HELM Editor 2.0 Final Report

CSCI E-599 Software Engineering Capstone Project

Harvard Extension School
May 2016

By

Simili Abhilash
Stephanie Dube
Thankam Girija
Sarah Leinicke
Chinedu Okongwu
Justin Sanford

|V EMR I TASK

p

HELM Editor 2.0 Final Report

Contents

Introduction
Abstract
Screenshots of Primary Uses of the HELM Editor 2.0
Design
Application Components
Technical Architecture
UML diagrams
Component Diagram
Development Environment
Build and Deployment
Development Process & Lessons Learned
Meeting the requirements
Estimates
Risks
Team Dynamic
Lessons Learned
Testing
Code Validation
Unit Testing
End to End Testing
Known Issues
Appendix
Keywords & References
Final User Stories
System Installation
Developer Installation Instructions
Detail Design and Application Components
Application Module
Views
Controllers
Services
Directives
Templates
Directory Structure
User Manual
References

HELM Editor 2.0 Final Report

1. Introduction
1.1. Abstract

The Hierarchical Editing Language for Macromolecules (HELM), enables the representation of a
wide range of biomolecules through a hierarchical notation that represents complex
macromolecules as polymeric structures with support for unnatural components (e.g., unnatural
amino acids) and chemical modifications. As per the documentation, HELM notation allows
monomers to be depicted in a standard atom bond representation, such as SMILES. Each
representation is given an identifier type, such as peptide or nucleotide. Monomer sequences can
be linked, producing biomolecules that have multiple monomer types. For more information about
the HELM notation, see items 1 and 2 in the References section.

A Java Swing based HELM Editor exists allowing users to take advantage of its functionality to edit
and display sequences of monomers and/or monomer fragments. This project ported the existing
HELM Editor to an open-source, web-based architecture. The core functionality is now hosted on a
server and can be accessed through modern web browsers. The pre-existing dependency on
commercial software such as MarvinBeans and yFiles are also removed.

Through this web application, users will be able to:

1. Convert biomolecular sequences to HELM notation
View graphical representations of biomolecules
Edit and modify biomolecules
Search and retrieve from the monomer library
View molecular properties of biomolecules

e WN

1.2. Screenshots of Primary Use Cases of the HELM Editor 2.0

Below are screenshots capturing several primary uses of the HELM Editor 2.0.
1.2.1. Convert biomolecular sequences to HELM notation and view graphical display.

Figure 1 below shows the Load Sequence page, in which a user enters a HELM notation, RNA/DNA
sequence, or a peptide sequence.

HELM Editor 2.0 Final Report

Load Sequence X

New | Load Files

Please choose: ANA/DNA
HELM

ACGETUACGTY FINNDNA
PEPTIDE

Reset Canvas - |pad Clear Cancel

Figure 1: HELM Editor 2.0, showing the dialog where users enter HELM notation, RNA/DNA sequences, or peptide
sequences

Once the user has loaded a sequence, a graphical image will appear on the upper canvas, as
displayed below in figure 2. The HELM notation also appears, on the lower canvas. If the user
loads a RNA/DNA or peptide sequence, it will be converted to HELM notation. If the user inputs a
HELM notation, the HELM Editor 2.0 will verify that the input is correct HELM notation. If the
notation is valid, the graphical representation will be displayed.

View: Detailed Sequence

T+

View: | HELM v

RNA1{R(A)P.R(C)P.R(G)P.R(T)P.R(U)P.R(AIP.R(C)P.R(G)P.R(T)P.R(U}}$$58v2.0

Figure 2: HELM Editor 2.0, displaying a graph of a biomolecule

Users can also view the biomolecular structure. In figure 3 below, a user has loaded a HELM
notation, right clicked on the diagram, and clicked “Show Molecular Structure” from the context

menu. A graphical representation of the biomolecular structure (retrieved from an external
webservice) appeared.

HELM Editor 2.0 Final Report

Figure 3: The HELM Editor 2.0 showing a biomolecular structure

1.2.2. Edit nodes on the canvas
Users can edit and delete biomolecules portrayed on the canvas. For example, figure 4 shows the

ability to select nodes and delete them from graphical display by using the trash-can icon at the
top right corner of the editor (circled in red).

CSCI E-599 Software Engineering Capstone Project 5

HELM Editor 2.0 Final Report

HELM Editor Antibody Editor About

HELM Editor 2.0

Load Reset
RNA | PEFTIDE | CHEM View: Detailed Sequence
Search | Explore
Search:

2+
(—3—)
+

View: | HELM v
RNAT{R(A)P[MR](U)[sPLR(G)P.R([5meC])P.[dR](T)P[UR](T)}5555

Figure 4: After selecting nodes, users can click the trash-can icon (upper right, circled in red) to delete them.

1.2.3. Search and retrieve from the monomer library

In figure 5 below, a user has searched for the letter ‘g’ on the left panel. Monomers with that
letter are listed beneath the search box. Users can then click and drag a monomer to the upper

canvas on the right.

HELM Editor 2.0 HELM Editor ~ Antibody Editor ~ About
Load Reset i
[RNA | PEPTIDE | CHEM View: Detailed Sequence
Search | Explore Py
Search la (_8’
+ £
RO
&
&
View:[HELM v
RNA1{[dR](G)P}5355

Figure 5: A user retrieved a biomolecule from the monomer library on the left and dragged it to the canvas

1.2.4. View molecular properties of biomolecules

HELM Editor 2.0 Final Report

Figure 6 below shows two ways to view molecular properties. A user can select ‘molecular
properties’ from the drop-down menu on the lower pane, or from the right-click context menu
options on the upper canvas. The molecular properties include the component type, molecular
weight, molecular formula, ext. coefficient, and molecular structure.

View: Detailed Sequence

+
(—8—)
v

/

View > | HELM Notation
Canonical HELM Notation

e Molecule Properties
Save >
View: | Molecule Properties + |
Component Type Molecular Weight Molecular Formula Ext. Coefficient Molecular Structure
CHEM 3524.78 G120H173N42067P7S 72.02251 Show

Figure 6: Users can view molecular properties on the lower pane, or through the right-click options on the upper canvas

1.2.5. View molecular properties of monomers

Users can view the monomer details by double-clicking the monomers displayed on the monomer
palette. In figure 7 below, a user has double clicked the monomer “A”. The monomer details, such
as the ID, name, type, molecular structure, HELM notation, Molfile, and SMILES string, are

displayed as a popup.

HELM Editor 2.0 Final Report

Monomer Details
ID A

Type Nucleic Acid

HELM Notation R(A)P

Name Adenine
Smiles

Monomer Type Branch
Natural Analog A
Polymer Type RNA

H4sIAAAAAAAAAKWUPY/CMAXAS
/WKS9xBlu3E+ZjhxFROYrgxituYOD341SClqYDNFZUpS

e /Ok52qcQDDT +X69WSAKZUYR1USWCOCA2ZgSXZmKKUAJSCR |

Molecular Image

Figure 7: Users can view monomer properties by double-clicking the monomer on the monomer palette

2. Design

2.1. Application Components

HELM Editor Application

e The core framework for the web application is Angularls, utilizing HTML5, CSS, and
Bootstrap.

e All graphical representation of the polymers and monomers is accomplished through the
use of SVG. This has replaced the use of the commercial tool yFiles that was used in the
previous Java application.

e The web application is hosted on a DigitalOcean droplet for the purpose of this project. This
server is accessible here:_http://104.236.250.11/editor/dist/.

http://104.236.250.11:8080/WebService/DocumentationHELMNotationToolKitRestAPI.pdf
http://104.236.250.11/editor/dist/

HELM Editor 2.0 Final Report

e There is no ‘backend’ for the application -- all files are served from the hosted version and
everything is handled client-side, aside from the functionality provided by the
HELM2WebService.

e The hosted instance of the HELM2WebService is used to translate RNA/PEPTIDE sequences
into HELM notation, compute the molecular weight of a polymer, retrieve the molecular
image, and provide a searchable monomer database, among other functions. These

functions are detailed in the section below.

Hosted version of HELM2WebService

e The HELM 2.0 Toolkit initial implementation is available as an open-source web service.

e The web service exposes a RESTful APl and has the following functionalities:
Conversion from Peptide or RNA string sequences into HELM notation
Conversion from HELM notation into canonical HELM notation
Conversion from HELM notation into JSON output

Conversion between HELM notation and Fasta Sequences

A A

Generation of image representations of monomer and HELM molecules

e The HELM2WebService is hosted on an Ubuntu server running on a DigitalOcean Droplet,
running Apache Tomcat 8. This server is accessible here:
http://104.236.250.11:8080/WebService/DocumentationHELMNotationToolKitRestAPI.pdf.

https://github.com/MarkusWeisser
http://104.236.250.11:8080/WebService/DocumentationHELMNotationToolKitRestAPI.pdf
http://104.236.250.11:8080/WebService/DocumentationHELMNotationToolKitRestAPI.pdf

HELM Editor 2.0 Final Report

2.2. Technical Architecture

HELM Editor
,,,,,,,,,,, Browser
| Angular JS

Directive
Javascript

Controller
Javascript

Template
HTML

Molecuar Monomer Extinction ‘ HELM ‘ Molecul ‘ Molecul ‘ Tomcat
Name Name Coefficient Notation Image Weight server

HELM2 Webservice

Figure 8: The HELM Editor 2.0 Technical Architecture
2.3. Use case diagram
2.3.1. Use Case diagram for HELM editor web application

()

View monomer graph from
HELM notation

View molecular structure
from monomer graph

View SMILES from
monomer graph

View molecular
properties from
monomer graph

View monomer graph from

Nucleotide or Peptide
/ User

Sequences

Build Nucleotides and
Peptide structurs
using Monomer
Library

View and search
monomers using
monomer library

Figure 9: The HELM Editor 2.0 Use case Diagram

2.4. Component Diagram

2.4.1. Component diagram for HELM editor web application

The component diagram shows the interactions between the main elements of the system:

Views/Templates, Controllers, Services, and Directives.

Module
helmEditor2App

View:
about.htm|

config

Controller:
HeaderCtrl

$routeProvider

Controller;
AboutCtrl

Controller
MainCtrl

View
main html

Controller:

[Service
LibraryCtrl

Monomerlibraryservice

Template:
monomer htrml

Controller:
modal

[Directive:] [Directive] | Directive: I
maodalDialog helmCanvas contextMenu
Directive = -
Monomer \I/
Template Template Template
modaldialog.html helmcanvas.html helmcanvaslower html

Template:
monomerdetails.html

Figure: Component Diagram

View:
habe html

Controller:
HabeCtrl

Service
CanvasDisplayService

Service:]

HelmCenversionService

Service
HELMMotationService

Service
MonomerSelectionService

]

Service
webService
Service:
Blob

Service:
FileSaver

| Template:

imagemodal html

Template
tablemodal html

Figure 10: The HELM Editor 2.0 Component Diagram

2.5. Sequence Diagrams
2.5.1.

Load Sequence Functionality

sd Load Sequence Functionality Sequence Diagram)

| View - Main.html | | Main Controller | | WebService Factory | | HELM2Webservice | | HelmConversion Service | | CanvasDisplay Service
S T \ T T \
| 1:load('Jl_ 1.1: loadSequence) ! 1.1.1: showLoadSequer]‘ceMode!(} : '\ : }
xternal webservice
| | | |
\ | | \
<@sg!angad_S§]l£n eModal } : : }
| \ | | \
2: inputSequence and selectSequenceque(} ‘ | | |
| \ | | \
3: Submit :
0 yT 3.1: processinput(y l 3.1.1: closeLoadSequw‘enceModal() : : }
\ | | \
\ | | [
| } | \
alt) [sequemceType=HELM] | | | |
3{1.2: validateHELMNOtaioh0 3 ; 5 1. validageliELMNotation) : }
| valid/invald status | |
cvalid/invalid status _| | | !
77777777 ok 2 e oo s e e e e e e | \
[sequenceType = Nucleotide] | | | |
3.1 3: convertToHELMNotgti | \
| \
| \
. _helmNotation ___| | : }
4: convertHELMhotationToSequenceArr,Lly(heimNotation) .“*-11 processHELMString() }
I |
\ | T—‘ \
\ | \
elmNodeSequenceArr
s ccosssconsssonsscog) helmNodeSequenceArrdy \
\ | | \
|| \ 5: displayHELMBequenceOnCanvas() | 5.1: displayGraphicsPnSVGCanvas(
\ | |
\ | |
\ | |
gfphicsDisplayedOnCankds: _ _ _ _ __ _ _ L _ _ _ _graphicsDisplayedOnCanvas |
\ | | \
<qrapi'nics.Dis;:nla\re HDnCanvas |_ ‘ | | [
7777777 1 | \ | | [

Figure 11: The HELM Editor 2.0 Load Sequence Functionality Sequence Diagram

2.5.2. Monomer Library - Initial Launch - Sequence Diagram

sd Monomer Library - Initial Launch - Sequence Diagram)

Module - HELMEditor App View - Main.html Library Controller MonomerLibrary Service

= Ac|t0r0 T T | I
. 1: Launch Web-"iteﬂl L.1: initMonomerLibraryl) ‘
|
|
|

I s showSearchVielwAsDefault()

|
1.2 BonchblaProed, | 1 B dispiaySe%rchView(}

displaySearchView

rn<ainPage\'WthSearchView uhched

%nainPa geWithSearchViewlLaunched |
_______ T |

1.1.1: readAndParseMgnomerLibraryXML()

Figure 12: The HELM Editor 2.0 Monomer Library Initial Launch Sequence Diagram
2.5.3. Monomer Library - Search Functionality - Sequence Diagram

sd Monomer Library - Search Functionality - Sequence Diagram)

Module - HELMEditor App View - Main.html Library Controller MonomerLibrary Service
. ActorQ | T | |
! 1: inputbearchParam() \ | |
| ’—L.l: searchMonomers(Fearchanut) |
| 1.1.11: searchMonomers(sear, hinput)
: 1.1.1.1: readFromLinkgdDRB(searchinput)
|
|
| « _monomerList _
| - monomerlist |
| 1.2: displayMonometList()
|
| |
| |
e s monomersDisplayed | |
T |
I

Figure 13: The HELM Editor 2.0 Monomer Library Search Functionality Sequence Diagram
2.5.4. Monomer Library - Explore and Select Monomer Functionality - Sequence Diagram

sd Monomer Library - Explore and Select Monomer Functionality - Sequence Diagram)

Module - HELMEditor App | | View - Main.html | Library Controller MonomerLibrary Service

1: eJ‘mlore() l 1.1: exploreMonomers() ; 1.1.1: getMonomerCategories(Q !
1.1.1.1: reagfromLinkedDB()

F Ac‘ror(]

monomerCatagories

|
|
|
} ¢ —— —menomerCatagories _ __
|
|
|

|
|
1.1.2: displayExploreView() |
|
|
|

monomerCatagories

e S — =
exploreViewWithMomﬂ‘merCatagoriesDispiayed i
o Ll L s L L . . |
: selectMonomerCate goryi
T 2: selectMoromerC 0 | | |
i 2.1: getMonomers(category) | 2.1.1: getMonomers(category) o |
\ 2.1.1.1: readFfgmLinkedDB()
\
| FI
\
\ monomerList
| I |
\ e s monomerlist_ | | | |
e monometsDisplayed _ _ _ _ _ _ _ | ! '
\ T | |
\ | | |
I | |

Figure 14: The HELM Editor 2.0 Monomer Library Explore and Select Monomer Functionality Sequence Diagram

2.6. Development Environment

All the code is stored within a public GitHub repository, which can be found here:
https://github.com/CSCIE-599/HELM-Editor-Ul. After cloning the repository to a workstation, the
user must install several tools globally in order to have a fully-functioning development
environment. Explicit instructions are listed in Appendix 5.1. The tools that are needed globally
are: NodelS, NPM, Grunt-CLI, and Bower. Once these are installed, the rest of the dependencies
can be installed locally via Bower and NPM, from the root directory of the project that has been
cloned.

There is no required (or suggested) text editor or IDE, and the team has employed a number of
text editors with no adverse effects. As the master branch is locked within GitHub, all development
and bug fixes must occur on separate branches, and the development environment is configured
to only allow Pull Requests to be merged into master once an automated build and test process
(run on Travis-Cl) completes with all tests passing successfully. See the Testing section below for
more detail on the test setup and how to run the tests.

The original scaffolding of the application was provided through Yeoman, and it is strongly
recommended that you use Yeoman when adding Controllers, Routes, Directives, or any other
Angular components to the application. This will ensure that the files are placed in the appropriate

https://github.com/CSCIE-599/HELM-Editor-UI

HELM Editor 2.0 Final Report

location within the application directory, and provide the initial scaffolding for each component
and the appropriate test file.

In order to run the web application, there are two supported methods. First, a user could host the
files on any Apache web server, and run the dist/index.html as the root page of the application.
Otherwise, during development, a grunt target has been provided to run a lightweight web server
to host the Angular application. Users can start this with the task Sgrunt serve.

2.7. Build and Deployment

All building, deployment, and testing is handled through the Grunt task manager. Grunt is provided
with the default Yeoman Angular scaffold and used as the means of building, testing, and
deploying the application. Everything that is done by Grunt can be viewed by inspecting the file
Gruntfile.js within the root directory. The short form of how Grunt is configured is as follows: to
build the application (i.e. the default grunt target mentioned above), Grunt performs the following
steps:

1. Run jshint (see section below on Code Validation for details)
2. Run jscs (see section below on Code Validation for details)
3. Run tests, which includes the following steps
a. Clean all working directories
b. Run wiredep, which injects Bower components into the application
c. Runthe test web server
d. Run the unit tests through Karma
4. Build the application
a. Clean dist/ directory
b. Run wiredep, which injects Bower components into the application
c. Compile and minify all source code into single javascript and HTML pages (multiple
steps utilizing Grunt plugins UseMin, ngTemplates, ngAnnotate, concat, cdnify,
cssmin, ugliy, filerev, and htmlmin) - this was included with the base Yeoman
scaffold, though it was slightly modified to handle the application structure changes
we were forced to make.
d. Copy all files into the dist/ directory.

It is expected that anyone trying to build the application on their own use the Grunt default task
directly, which should build the application fully once it passes all code validation and unit tests.
End-to-end tests have been removed from the default build task due to the lack of a common web
browser to test this on. End users should run these on their own before making any commits.
However, the end-to-end tests (on Firefox) are run on all Travis builds, so they must pass before
any Pull Request may be merged.

HELM Editor 2.0 Final Report

Additional Grunt targets have been provided to build, run unit tests, run end-to-end tests, run a
test server, and are repeated in the appendix, but are listed here for convenience:
e S grunt - run all tests, build, minify, and distribute
S grunt build - build app, without running tests
S grunt serve - build app and run server locally to test manually
S grunt test - run Karma unit tests one time
S grunt test-continuous - run Karma continuously, testing with every file that's saved
S grunt protractor-chrome - run Protractor tests only on Chrome
S grunt protractor-firefox - run Protractor tests only on Firefox
S grunt protractor-all - run Protractor tests on Firefox and Chrome, simultaneously

In addition to the Grunt targets that have been provided, the project is also set up with Travis-Cl
for continuous build, test, and deployment. For each commit to any user branch, Travis pulls the
repo into a clean environment, installs all dependencies, and runs the default target (unit tests and
build), as well as the end-to-end tests on the Firefox browser. This build process also runs on any
Pull Requests to master, and must complete successfully before the code can be merged into the
master branch. This process ensures that both the code quality and test coverage are tracked, and
limits the number of breaking changes that can potentially make it into master.

Lastly, for this project we have hosted the latest stable build of the application here:
http://104.236.250.11/editor/dist/#/. This build and deployment is also automated through Travis,
where any commit to the stable branch will result in a build, which, if it succeeds building and
end-to-end tests, will automatically deploy this latest version to the above URL. The previous build
(i.e. the build last deployed to stable before this one) is copied to
http://104.236.250.11/editor/backup/ and kept as a backup. This backup is overwritten with any
new push to stable and successful build.

3. Development Process & Lessons Learned

3.1. Meeting the requirements

We met our Milestone 2 and 3 goals. We used 2-week agile sprints, and allocated work based on
user stories listed on Github as ‘issues’.

The lists below provide more detail regarding our progress towards meeting the project
requirements:

Interfacing with HELM2WebService
e The Application provides all the APl methods required to interface with the
HELM2WebService to carry out the following functionalities:
o Validate HELM notation,
o Convert peptide or RNA string sequences into HELM notation,

http://104.236.250.11/editor/dist/#/
http://104.236.250.11/editor/backup/

o Convert HELM notation into canonical HELM notation,
o Convert HELM notation into JSON output,
o Convert HELM notation into Fasta sequences, and vice versa.

User Interface to input a sequence
e Users can input either a RNA, PEPTIDE, or HELM sequence. The application will invoke
appropriate web service API to generate or validate the HELM sequence.

Canvas display of HELM strings

e After loading a RNA, PEPTIDE, or HELM notation sequence, users can view a graphical
representation of the molecule on the upper canvas.

e Users can modify graphical representations by adding, removing, and replacing monomers.

e On the lower canvas, users can select to view the HELM notation, the sequence, or the
molecular properties of the sequence loaded.

e Users can zoom in and out, and pan right and left, on the upper and lower canvases.

e Users can right-click on the upper canvas to 1) view the molecular structure image, HELM
notation, or canonical HELM notation in a modal window, 2) save notation to a local file, 3)
copy the notation to the clipboard, or 4) view molecular properties, such as molecular
weight and formula.

e The HELM Editor 2.0 does not graph biomolecules with two or more linked cyclical
sequences (a rare instance). If a user loads such a biomolecule sequence, a warning will
appear on the upper canvas. The cyclical sequences will be drawn in the upper canvas, but
they will not be linked to each other.

Monomer Library
e Users can look up a monomer using ID, name and type, to get details about the monomer.
e Users can obtain a list of polymer types (Peptide, RNA/Nucleic Acid, Chem).
e Users can retrieve a list of monomer groups for a polymer type.
e Users can get a list of all monomers, categorized by polymer type and monomer group.
e Retrievable objects are exposed internally with shape and color pallet information.

3.2. Estimates

The process we followed for estimating the effort was relatively straight-forward. We first
estimated the effort on tasks by analyzing the existing HELM editor functionality, reviewing the
HELM editor 2.0 RFl and other documents and through customer interviews. Then we prioritized
the tasks based on the input from the HELM experts. Next we researched on the tech stack and
the implementation effort associated with the technology. Since all team members were new to
the tech stack that we chose, we added additional time to account for the learning curve. We also
identified functionalities that can be worked on independently and assigned that to individual
resources. Also, we identified the particularly complex functionalities, divided them into sub-tasks,
and assigned multiple resources to worked on them together. Since the team members worked

on multiple tasks and did not necessarily live in the same regions, we accounted for additional
integration time in our initial estimate.

We have accomplished all of the expected user stories set in our Project Plan and included some of
the optional features. We set up a web server running a hosted version of the code, and an
automated build and test process. The HELM Editor graphs basic HELM sequences, as well as
multiple sequences and connections between sequences. It also includes a monomer library that
is searchable and returns some monomer and pallet information. Internally, these monomer
objects are exposed in a way that allows access to color pallet and other information.

Sprint Schedule

Sprint Description Start End Status

Sprint 1 | Ensure development environment | 03/04/2016 | 03/20/2016 Done
is complete; complete estimation
of tasks, ensure all tasks are in
Github under the appropriate
milestone (if not already
complete); begin development of
application framework.

Sprint 2 | Be able to show the application to | 03/21/2016 | 04/06/2016 Done
stakeholders with very basic
functionality.

Sprint 3 | Continue to add functionality. 04/08/2016 | 04/17/2016 Done

Sprint 4 | Finalize application (quality 04/18/2016 | 05/04/2016 Done
assurance and testing).

Completed Tasks and Estimates

The table below, lists the major tasks that were carried out for the project. Init, ‘1 week’
corresponds to 14 hours per week per resource. A resource corresponds to an individual
developer.

Task Details Initial Estimate | Actual

Learning and
ramp up

Learn AngularJS and SVG and the
development environment tech stack.
Gain indepth knowledge on the HELM
domain and existing application.

1 week
6 resources

1 week
6 resources

GitHub Issue 3 - The base application has been created | 1 week .75 weeks
Development and added to the project repository in | 1 resource 1 resource
environment Github.
setup
GitHub Issue 4 - Setup an automated build and test 1 week 1.25 weeks
Automated build process that is run on each Pull 1 resource 1 resource
system setup and | Request from a development branch
deployment to to main, and on each commit to main.
web server Publish the application to a web

server.
GitHub Issue 5 - Application can parse a HELM 2 weeks 2 weeks

Canvas Pane
graphical display
of HELM string

sequence.
Canvas pane can render the graphical
representation of a HELM sequence.

2 resources

2 resources

GitHub Issue 6 - The peptide or RNA string that is 2 weeks 2 weeks
Load entered into the modal dialog is 1 resource 1 resource
peptide/RNA/ converted to HELM notation, and
HELM sequence validates HELM notation.
GitHub Issue 8 - The existing monomer library and 2 weeks 2 weeks
Internal support categorization information is 1 resource 1 resource
for monomer converted into a single store of data,
library to facilitate integration with the web

application
GitHub Issue 9 - Monomer palette is implemented and | 2 weeks 2 weeks
Monomer pallet added to the web application. 1 resource 2 resources
initial support Monomer palette supports

exploration by monomer type only.
GitHub Issue 10 - | As a user of the web application, lam | 1 week 1 week
Ability to add new | able to drag and drop elements from 1 resource 1 resource

monomers to
existing graphical
sequence

the monomer palette onto the Canvas
to add them to the current sequence
or replace existing monomers, so that

| can begin to modify the existing
molecule.

Github Issue 11 - As a user of the web application, I can | 1 week 1 week
Ability to remove | select an existing element from the 1 resource 1 resource
elements from Canvas and delete it, so that | may
graphical remove unwanted elements.
sequence
GitHub Issue 12 - | The canvas pane can render alternate | 1 week 1 week
Alternate sequence representations (eg, 1 resource 1 resource
representations PEPTIDE sequence, HELM, Canonical
supported in HELM, image). Dropdown added to
Canvas the canvas pane to allow user to

select desired representation. When

new representation is selected,

application makes a call to the

HELM2WebService to retrieve the

new representation.
GitHub Issue 13 - | After right-clicking on a biomolecule, 1 week 1 week
Contextual menu | users now see a contextual menu, 1 resource 1 resource
(replace right-click | with drop-down options to view the
menu) biomolecular structure in a modal,

view the notation in a modal, copy the

notation to a clipboard, or save the

notation to a file.
GitHub Issue 14 - Monomer detail view added to the 1 week 1 week
Monomer and 1 resource 1 resource

Sequence Details
(Bonus
Deliverable)

web application and contextual menu.
Monomer detail view accessed when
a user double clicks on a monomer in
the monomer library.

View includes information that can be
retrieved from the HELM2WebService,
such as an image of the chemical
representation, molecular weight, etc.

GitHub Issue 15 - | There is a search field within the 1 week 1 week
Search for monomer palette allowing the user to | 1 resource 1 resource
monomer by ID enter a monomer ID or name.
and name (Bonus Monomer palette displays any search
Deliverable)

results from the monomer library.
GitHub Issue 20 - | Added functionality in HELM Editor 2 weeks 2 weeks
Interfacing with AngularlS application to interface with | 1 resource 1 resource
HELM2Webservic | the HELM2Webservice to define APIs
e to all web service methods.
GitHub Issue 26 - For Webservices, added a config array | 0.25 weeks 0.25 weeks
Constants and to specify the base url and all 1 resource 1 resource
properties should | webservice API urls.
be retrieved from
a config file
GitHub Issue 28 - The main layout/frame of the landing | 0.25 week 0.25 week
Create a main page has been created. It consists of: 1 resource 1 resource
layout Left Pane - to hold monomer palette;

Right top pane - for graphical

display/editing;

Right bottom pane - for displaying

helm notation/ monomer info etc.
GitHub Issue 39 - In the lower canvas, users can select 1 week 1 week
Modify layout to from a dropdown menu to for 1 resource 1 resource
make the bottom | alternate views, including of HELM
"pane" only notation, sequence, or molecular
support alternate | properties such as molecular weight
viewings and formula.
GitHub Issue 40 - Unnecessary alternate pages have 0.25 week 0.25 week
Remove all been removed, to improve Ul. 1 resource 1 resource
unnecessary views
from the
navigation
GitHub Issue 41 - | The ‘About’ view has been updated 0.25 week 0.25 week
Update and with data about the HELM project and | 1 resource 1 resource

About views to

the development team. The ‘Antibody

have meaningful
placeholders

Editor’ view states that that tab is
‘under development’.

GitHub Issue 42 - | The canvas display does not correctly | 0.25 week 0.25 week
Modify Canvas display sequences that have multiple, | 1 resource 1 resource
display to warn linked cyclical sequences. When a user

when multiple loads such a sequence, an alert

cycles are message appears to warn the user.

detected to show | The cyclical sequences are drawn, but

a warning they are not connected.

Unit testing Unit tests for each controller and 1 week 1 week

(GitHub Issues
43-49)

directive and service are complete.

6 resources

6 resources

GitHub Issue 50 -
End to end tests

A full set of end-to-end tests for the
main helm editor has been
implemented. Specifically, the
following functionalities are now
tested:

- clicking load displays the
modal dialog,

- clicking the x hides the modal
dialog,

- clicking outside of the modal
dialog hides the modal dialog,

- loadingin an incorrect PEPTIDE
sequence results in an error
message,

- loadingin anincorrect
NUCLEOTIDE (RNA/DNA)
sequence results in an error
message,

- loading in a correct/known
PEPTIDE sequence results in
valid HELM and valid SVG
display,

- loadingin a correct/known
NUCLEOTIDE sequence results
in valid HELM and valid SVG

1 week
1 resource

.5 weeks
1 resource

Per guidance
from Peter and
the
stakeholders, a
fuller suite of
end to end
tests was
deferred in
favor of other
bug fixes. This
is something
that can be
added on ata
later date, as
the framework
for running
these tests
exists.

display,

- loading in a known-incorrect
HELM sequence results in an
error message,

- loading in a known-correct
HELM sequence results in the
HELM string and valid SVG
display for:

- asingle polymer,

- a HELM sequence with
multiple polymers,

- a HELM sequence with
a single cycle,

- a HELM sequence with
two cycles - should
result in warning, and

- toggling the lower pane flips
from HELM to Canonical HELM

to Image.
GitHub Issue 51 - Users can now zoom in and out, and 2 weeks 2 weeks
Enable user to right and left, on graphical 1 resource 1 resource
zoom in and out representations of biomolecules.
on the SVG
drawing
GitHub Issue 52 - Users can now check a box to clear 0.25 week 0.25 week
Create checkbox the current canvas. 1 resource 1 resource

when loading new
sequence to clear
current canvas

3.3. Risks

1. A primary risk was meeting our milestone goals on deadline in the given timeframe. The
team had no previous exposure to the HELM project. We estimated tasks based on the
HELM RFI and other documents and customer interviews, rather than experience with the
HELM suite.

Mitigation: Given this risk, we have prioritized certain tasks, such as transitioning the HELM
Editor to a web-based architecture, and noted that we will only implement other customer

requests, such as representing molecular ambiguities, if time permits.
2. Most of the team members had little experience with AngularlS or SVG.

Mitigation: Team members have taken AngularJS tutorials and we helped each other to get
started with the development.

3. Lack of experience working on a distributed team, in an asynchronous model.

Mitigation: Team meets often over Hangouts (at least weekly) for progress updates and
questions/discussion, and share emails with important updates as they are needed.

4. Lack of familiarity with development environment and tooling (grunt, jshint, protractor,
karma, etc).

Mitigation: Team met to go over the build environment and process early on, and assist
each other as needed to commit, merge, and test code.

3.4. Team Dynamic

We met weekly on Google Hangouts to provide each other status updates and ask questions. We
also communicated frequently through e-mail.

To allocate work, each team member chose one or more user stories listed on our Github
repository. Team members worked together on the more complex user stories. For example,
Thankam and Sarah collaborated on “User Story 5: Canvas Pane Can Display Graphical
Representations of HELM String”.

3.5. Lessons Learned

Continuous collaborations and synch up is important.

Learned to understand and build upon another person’s code.

Learned to better communicate one's own logic.

Learned that working together produces better results than working alone.

Integrating code earlier in the process is important.

Simply devoting extra time to address issues sometimes results in diminished return on
investment and fresh eyes from teammates or other resources can be necessary.

ok wNRE

4. Testing

This project has combined the best practices for AngularJS applications with regards to code
validation and testing, which are all run automatically on each build and push/Pull Request.

HELM Editor 2.0 Final Report

4.1. Code Validation

For code validation, the project uses both JSHint and JSCS. JSHint is a javascript code quality tool,
checking for common javascript coding errors such as unused or undefined variables, lack of
semicolons at the end of statements, and others. JSCS, on the other hand, is a code “style”
checking tool. JSCS ensures things like consistent use of single or double quotation marks. Both
configurations for JSCS and JSHint are, for the most part, as included by the base Yeoman scaffold.

Both tools must run on each build (i.e. automated on each push to any branch and Pull Request to
master), and the build process fails if either do not exit with success.

4.2. Unit Testing

Unit tests are run utilizing the Karma javascript test runner, in which all unit tests are written in the
Jasmine behaviour-driven javascript language, on top of the headless javascript framework
PhantomlJS. Currently there are 33 unit tests, though this number will raise significantly before
Milestone 3, as one of the goals of Milestone 3 is to increase unit test coverage.

There are two Grunt targets for running the unit tests:
® S grunt test - This runs all unit tests that are included within the /test/spec/ folder of the
application a single time and then exits.
® S grunt test-continuous - This runs all unit tests within /test/spec/ and then continues
running, re-running the test suite on every file change in the application.
It is strongly suggested that during development, the user open a terminal window and run the
second target above, and keep that window running (in view) during development to ensure no
tests have broken during development.

All unit tests are run as part of the automated build process, and builds and Pull Requests are
rejected if all unit tests do not pass.

4.3. Endto End Testing

End-to-end testing is handled through Protractor, which utilizes the Selenium server and Jasmine
language to describe the tests. The end-to-end tests are intended to test the actual use of the
application.

There are three Grunt targets for the end-to-end tests, and it is up to the developer to choose
which to run depending on the browsers that are installed:
® S grunt protractor-chrome - This runs all end-to-end tests that are included within the
/test/e2e/ folder of the application a single time on the Chrome browser and then exits.

http://jshint.com/
http://jscs.info/
https://karma-runner.github.io/
http://jasmine.github.io/
http://phantomjs.org/
https://angular.github.io/protractor/
http://www.seleniumhq.org/

e S grunt protractor-firefox - This runs all end-to-end tests that are included within the
/test/e2e/ folder of the application a single time on the Firefox browser and then exits.

e S grunt protractor-all - This runs all end-to-end tests that are included within the /test/e2e/
folder of the application a single time on the Chrome and Firefox browsers, simultaneously,
and then exits once both complete.

The end-to-end tests are run automatically on each Travis build, to ensure that all known
workflows pass before allowing any merges to happen to master. In Travis, because there is no
support for Chrome, the tests are only run on Firefox.

4.4. Known Issues

There are a few existing issues with the web based editor. Some of these issues exists in
the Swing based editor as well:

1. The editor cannot handle cyclic Nucleotide sequences. Currently it can only support
cyclic peptides.

2. The editor will not draw links between multiple cyclic peptides. Instead, the cyclic
peptides are graphed without links connecting them.

3. The molecular structure image for cyclic peptides will not show, because the
HELM2WebService returns a 500 error status code. It is currently captured and
thrown as an exception to the front-end.

4. The editor cannot support polygon shapes with more than 4 sides. Example,
Chemical modifier(CHEM) nodes are displayed as a rectangle instead of Hexagon.

5. Appendix

5.1. Keywords & References

Term Description

HELM Hierarchical Editing Language for Macromolecules. Active
project under the Pistoia Alliance:
http://www.pistoiaalliance.org/projects/hierarchical-editing-la
nguage-for-macromolecules-helm/

HAbE HELM Antibody Editor

Monomer An individual molecule that may bind with other molecules to
create a polymer. Examples include ‘A’, ‘T’, ‘G’ etc.

Polymer Large molecule, or macromolecule, composed of many

http://www.pistoiaalliance.org/projects/hierarchical-editing-language-for-macromolecules-helm/
http://www.pistoiaalliance.org/projects/hierarchical-editing-language-for-macromolecules-helm/

HELM Editor 2.0 Final Report

repeated subunits (e.g. monomers).
https://en.wikipedia.org/wiki/Polymer

HELM2NotationToolkit Java toolkit exposing HELM 2.0 functionality such as HELM
notation validation, conversion between different notations,
and image generation. This is an open source project, available
here: https://github.com/PistoiaHELM/HELM2NotationToolkit

HELM2WebService External Java-based Web Service APl exposing
HELM2NotationToolkit functionality. This is an open source
project, available here:
https://github.com/PistoiaHELM/HELM2WebService

Nucleotides Organic molecules that serve as the building blocks for nucleic
acids (such as DNA and RNA).
Reference: https://en.wikipedia.org/wiki/Nucleotide

Peptides Short chains of amino acid monomers linked by peptide
(amide) bonds.
Reference: https://en.wikipedia.org/wiki/Peptide

FASTA FASTA is a text-based format for representing nucleotide or
peptide sequences.
Reference: https://en.wikipedia.org/wiki/FASTA_format

Bootstrap HTML, CSS, and JS framework for developing responsive web
applications. Reference: http://getbootstrap.com/

SVG HTML5 component named Scalable Vector Graphics.
Reference: https://www.w3.org/Graphics/SVG/

5.2. Final User Stories

The following user stories are completed:
1. Development environment setup
Automated build system setup and deployment to web server
Load peptide, RNA and HELM sequence
Interfacing with the external webservice - HELM2Webservice
Canvas Pane display of graphical representation of HELM string
Graph with multiple sequences and connections between sequences
Zooming and Panning of the graphical representation
Display of molecular properties and chemical structure corresponding to the HELM string

O NV A WN

https://en.wikipedia.org/wiki/Polymer
https://github.com/PistoiaHELM/HELM2NotationToolkit
https://github.com/PistoiaHELM/HELM2WebService
https://en.wikipedia.org/wiki/Nucleotide
https://en.wikipedia.org/wiki/Peptide
https://en.wikipedia.org/wiki/FASTA_format
http://getbootstrap.com/
https://www.w3.org/Graphics/SVG/

9.

10.
11.
12.
13.
14.
15.

HELM Editor 2.0 Final Report

Right click contextual menu on canvas

Export of HELM and CHELM strings - copy to clipboard, and save to external file system
Monomer library exists and is searchable

Monomer from library can be added to the canvas pane by drag and drop

Select and remove node from canvas graph

Monomer detail can be viewed on double click

Units tests and End to End tests

5.3. System Installation

The HELM Editor 2.0 can be accesses through a browser. The hosted version of the HELM Editor
2.0 is available at: http://104.236.250.11/editor/dist/

The project source code can be downloaded at: https://github.com/CSCIE-599/HELM-Editor-Ul

5.4. Developer Installation Instructions

This project was generated with yo angular generator version 0.15.1.

The following steps must be done in order to set up your development environment fully.

1.

Install NodelS (version 4.3.2)

a. https://nodejs.org/en/
Upgrade npm

a. S$sudo npminstall -g npm

b. Snode-v
c. v4.3.2

d. Snpm-v
e. 3.8.0

If desired (Yeoman was used to create the scaffolding), install Yeoman (yeoman.io), and the
generators we need
a. $sudo npm install -g yo generator-karma generator-angular generator-protractor

Install bower
a. Ssudo npm install -g bower

Install grunt
a. $sudo npm install -g grunt-cli

Install node dependencies
a. S npminstall (from within the project directory)

http://104.236.250.11/editor/dist/
http://104.236.250.11/editor/dist/
http://104.236.250.11/editor/dist/
https://github.com/CSCIE-599/HELM-Editor-UI
https://github.com/CSCIE-599/HELM-Editor-UI
https://github.com/CSCIE-599/HELM-Editor-UI
https://github.com/yeoman/generator-angular
https://github.com/yeoman/generator-angular
https://nodejs.org/en/

HELM Editor 2.0 Final Report

7. Install bower dependencies
a. S bower install

8. Install Selenium (for e2e tests)
a. S node./node_modules/protractor/bin/webdriver-manager update
b. Note this can take a little while

9. Grunt targets
S grunt - run all tests, build, minify, and distribute
S grunt build - build app, without running tests
S grunt serve - build app and run server locally to test manually
S grunt test - run Karma unit tests one time
S grunt test-continuous - run Karma continuously, testing with every file that's saved
S grunt protractor-chrome - run Protractor tests only on Chrome
S grunt protractor-firefox - run Protractor tests only on Firefox
S grunt protractor-all - run Protractor tests on Firefox and Chrome, simultaneously

A note on Yeoman

Yeoman was used to generate the scaffolding for the application, which is how all of the folders
and files have been created. It is highly suggested that for modifications and additions to
components of the application (views, controllers, factories, etc) you use Yeoman. For instance,
the following commands might be useful (they should all be run from within the root folder of the
application):

1. Create a new view:
S yo angular:view <view name>

2. Create a new factory:
S yo angular:factory <factory name>

Full information on the angular generator can be found here: [Yeoman
generator:angular](https://github.com/yeoman/generator-angular)

5.5. Detail Design and Application Components

Application Module

e helmeditor2App: The main module of HELM editor web application is “helmeditor2App”
and is defined in app.js. This file defines all application routes using the Angular
SrouteProvider provider, while also wiring together all views and their respective
controllers.

https://github.com/yeoman/generator-angular

Views

main.html: This is the default view that will be loaded when the web site is launched. It
defines the main canvas where the graphics can be displayed and edited.

about.html: This is the simple “About” page of the web application, just listing the project
information.

habe.html: This will be the view for the future HELM Antibody Editor, though this has been
removed from the scope of the project due to time constraints. Currently only has a
placeholder page and route/controller.

Controllers

MainCtrl: This is the main controller. It defines various functions to parse the HELM
sequence, generate the graph and to display it on the canvas. It also defines the functions
for loading a sequence using a modal dialog, to invoke the webservice to validate the HELM
sequence and to convert the Peptide/Nucleotide sequence to HELM notation.

e HeaderCtrl: This controller handles the header in index.html, which contains the base
template for the web application.

® AboutCtrl: Handles the About page data model. This is trivial.

® HabeCtrl: Handles the HAbE page. This is trivial, as it has not been developed yet and is not
in scope for the project.

® LibraryCtrl: This controller interacts with the MonomerLibraryService and
MonomerSelectionService providing access to the monomer information.

Services

e webService: This Angular Factory provides the functionalities to invoke the
HELM2Webservice. It defines the webService APls and invokes it using Shttp get or post
methods. It processes the response and returns the API specific result.

e CanvasDisplayService: This service provides functionalities necessary to convert a sequence

of monomers into a graph of nodes and edges. The service is utilized in the controller
main.js. All the model objects that are used are defined in this service.

Following are the primary objects defined for rendering the graphical display:

o Node: Any monomer shape that appears in the canvas is a node. A node is defined
by the following properties:
m /d: Unique identifier for every node
m Name: The letter displayed inside a node
m Node Number: The number which appears next to the node which shows the
position of a node in a given sequence
m Type: Attribute which identifies the type of a node, like Ribose node,
Phosphate node or a Base node
Height: Height of a node
Width: Width of a node
Color: Height of a node
Rotate degree: The degree of rotation which tells SVG to rotate a shape, for
example, a square can be rotated 45 degrees to look like a rhombus.
Position (x, y): The x, y position of the node on the canvas
m Corner Radius (rx, ry): The radius with which the corner can be rounded. A
square corner can be rounded to look like a circle

o Connection: Any two nodes can be linked together by a connection entity. A
connection is defined by the following properties:
m Source: The node from which the connection begins.
m Destination: The node in which the connection ends.

The length of a connection is determined by the distance between the source and
connection nodes.

o CanvasView: The canvas view object which holds all the nodes and connections. It
provides two methods addNode() and addConnection() which can attach a node or
connection to the view.

o SubGraph: A sub component of a graph. This is primarily used to connect small
graphs together, for example a linear graph to a cyclic graph. It has the following
attributes:

m First Node: The first node in the subgraph
m Last Node: The last node in the subgraph
m NodesArray: Array of all nodes in the subgraph, in the order of appearance

e helmconversionservice: This service converts HELM notation into an array of monomer
sequences and an array of connections between monomer sequences. MainCtrl uses these
arrays to create a graphical image consisting of nodes and edges, calling helper methods in
CanvasDisplayService.

e monomerlibraryservice: This service imports the monomer library and provides an API for
accessing the monomers.
® monomerselectionservice: This service allows the selection of a monomer from the
monomer palette and adding to the canvas.
e helmnotationservice: This service provides the ability to manage interactions HELM
notation sequence and connections.
Directives
® modalDialog: This is the AngularlS directive for launching the loadSequence modal dialog.
® helmCanvas: This is the AngularlS directive registered with the name “helm-canvas”. When
AngularlS bootstraps and encounters the “helm-canvas” element in the DOM, it
automatically instantiates the directive. The directive is self-contained, reusable and is
restricted to use as an HTML element. The directive specifies an Angular)S template and
this replaces the “helm-canvas” tag in the HTML. The template is described in detail below.
e contextmenu.js: This manages interactions with the canvas through the context menu
generated on mouse right-click.
® monomer.js: This is the AngularlS directive for displaying the monomers on the monomer
pallette. It loads the html content from the monomer.html
Templates
® helmcanvas.html: The entire contents of the template is replaced in the DOM when using
the directive “helm-canvas”. All the SVG related elements are contained within this
template.
e helmcanvaslower.html: This template adds a canvas to show alternate view of monomer
graph in the lower pane
e modaldialog.html: Template used for the ‘Load’ button modal
e imagemodal.html: Modal template used for right-click menu option to view a molecular
structure image
e monomer.html: Template used to select a monomer on a mouse click
® monomerdetails.html: Modal template to display monomer details
e Tablemodal.html: Modal template for right-click option to view a table of molecular
properties
e viewmodal.html: Modal template for right-click options that do not require an image or a

table

5.6. Directory Structure

Once you have installed all node and bower dependencies, and built the project once, the
directory structure is as follows:
e HELM-Editor-Ul/ - root application folder
o app/ - main application folder
m common/ - location of common files
e svg class.js - support for JQuery-style methods for SVG
m images/ - location for any images
e yeoman.png - default Yeoman image
e arrow-down.png - for pan button
® arrow-up.png - for pan button
e arrow-left.png - for pan button
® arrow-right.png - for pan button
m scripts/ - location of all script files
e controllers/ - location of all controller script files
o about.js - Controller for the About page
o habe.js - Controller for the HAbE page
o header.js - Controller for the navigation bar
© main.js - Controller for the main editor page.
o library.js - Controller for the monomer library
o modal.js - Controller for the modal dialogs
e directives/ - location for all directive script files
o helmcanvas.js - Directive for helm-canvas
o modaldialog.js - Directive for modal-dialog
© monomer.js - Directive for monomer display in the library
o contextmenu.js - Directive for context menu
e services/ - location for all service script files
o canvasdisplayservice.js - Service for CanvasDisplayService
o helmconversionservice.js - Service for HeImConversionService
o monomerlibraryservice.js - Service for MonomerLibraryService
o webservice.js - Service for webService (HELM2WebService
interface)
o monomerselectionservice.js - Service for
MonomerSelectionService
o helmnotationservice.js - Service for HELMNotationService
® app.js - root application script file
m styles/
e helm.css - HELM-specific CSS rules
® main.css - CSS for the main editor page
m templates/
e helmcanvas.html - template for the helm-canvas directive

o O O O

m views/

modaldialog.html - template for the modal-dialog directive
helmcanvaslower.html - template for lower pane

imagemodal.html - template for molecular image popup
monomer.html - template for displaying an available monomer or
fragment in the monomer library

monomerdetails.html - template for monomer detail popup
tablemodal.html - template for lower pane table display
viewmodal.html - Directive for View-only modal dialogs in the editor

about.html - HTML for the about view
habe.html - HTML for the HAbE Editor view (placeholder)
main.html - HTML for the main HELM Editor page

m 404.html - Default error page

DefaultMonomerCategorizationTemplate.xml - Monomer categorization

information

favicon.ico - favicon
index.html - root HTML page of full application
MonomerDBGZEncoded.xml - Monomer library initial file

m robots.txt - for web-crawling
bower_components/ - Bower dependency install directory
dist/ - Location of minified and compiled files, for distribution
node_modules/ - NPM dependency install directory
test/ - main test folder

m e2e/ - location of all end-to-end (Protractor) test files

scenarios/ - location of actual test files
o views.js - all e2e tests are in this file currently
protractor.conf.js - Protractor config file

m spec/ - location of all unit tests

controllers/ - location of all unit tests for controllers
o about.js - unit tests for the About page
habe.js - unit tests for the HAbE page
header.js - unit tests for the navigation bar
main.js - unit tests for the main editor page.
library.js - unit tests for the monomer library
o modal.js - unit tests for the modal dialogs
directives/ - location of all unit tests for directives
o helmcanvas.js - helm-canvas directive unit tests
o modaldialog.js - modal-dialog directive unit tests
O monomer.js - monomer directive unit tests
o contextmenu.js - Directive for context menu
services/ - location of all unit tests for services

o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o

canvasdisplayservice.js - CanvasDisplayService unit tests
helmconversionservice.js - HeImConversionService unit tests
monomerlibraryservice.js - MonomerLibraryService unit tests
webservice.js - webService unit tests
helmnotationservice.js - HeImNotationService unit tests
monomerselectionservice.js - MonomerSelectionService unit
tests
m .jshintrc - jshint configuration file for tests specifically
m karma.conf.js - Karma configuration file
.bowerrc - Bower configuration file
.editorconfig - Default editor configuration file
.gitignore - Git ignore settings
.jscsrc - JSCS configuration file
.jshintrc - JSHint configuration file
.travis.yml - Travis build file
.yo-rc.json - Yeoman configuration file
bower.json - Bower dependencies
Gruntfile.js - Grunt targets and configuration
LICENSE - MIT License file
package.json - NPM dependencies
README.md - README file

0O O O O O O

5.7. User Manual

1. Launch the hosted application through any modern browser:
http://104.236.250.11/editor/dist/.

2. Toload a sequence:

a.

®oo o

Click the “Load” button to launch the Load Sequence popup dialog.

Input the sequence, and select the sequence type.

Click Submit.

The graphical representation of the sequence will be displayed in the canvas.
Sample sequences are provided, with their results:

i. RNA/DNA
1. Input: ATG
2. Output:

ﬂﬂﬂﬂﬂ

http://104.236.250.11/editor/dist/

HELM Editor 2.0 Final Report

Figure 15: Graphical representation of a Nucleotide sequence

ii. PEPTIDE
1. Input: ATG
2. Output:

1| F_"l SI 4I SI

Figure 16: Graphical representation of a Peptide sequence

iii. HELM Sequence - there are various sequences provided on the load screen
1. Input: PEPTIDE1{R.Y.F.L.W.V.F.P.L}SPEPTIDE1,PEPTIDE1,9:R2-1:R155S
2. Output:

Figure 17: Graphical representation of a cyclic Peptide sequence

3. View Monomer Library (Milestone 3)
a. Select a polymer from a tab of available types .
b. Select one or more monomer groups or sub-groups from a corresponding list that is
dynamically generated.
c. Select a monomer from a list of monomers to access its information. The monomer
palette displays the monomers that are retrieved from the monomer library.
d. Double click on a single monomer in the palette to open a pop-up with additional
details about the monomer.
4. Edit Sequence (Milestone 3)
a. Drag or click on a single monomer from the monomer palette to the canvas
5. Save Sequence (Milestone 3)
a. Right click and select the ‘Save’ option to download the HELM notation or canonical
HELM notation to a file.
6. Copy Sequence (Milestone 3)
a. Right click and select the ‘Copy’ option to copy the HELM notation or canonical
HELM notation to the clipboard

5.8.

HELM Editor 2.0 Final Report

HELM Notation Decoded

The HELM notation renders biomolecules composition and structure in a machine-readable format.
This diagram below explains the HELM notation:

ONOUEWN

Natural amino acids Non-natural amino acids are
are represented by represented by multi-letter codes T P o
single letter codes enclosed in square brackets e s
Polymer sequences are RNA1{R(A)P.R(G)P.[mR](C)P.R(U)P.R(U)P}]
defined at the start | PEPTIDE1{K.K.E.K.G.C}| CHEM1{SMCC} |

$RNA1,CHEM1,15:R2-1:R1

The connections

| PEPTIDE1,CHEM1,3:R3-1:R2

types of polymer are $5%
defined after the $ sign

between different

Then you define where
First you define which polymers they are attached
are attached to which

Figure 18: Diagram explaining the HELM Notation

References

HELM Project overview:
https://pistoiaalliance.atlassian.net/wiki/download/attachments/8716303/Short_form_HE
LM_Leaflet%202015_08 20%20docx.pdf?version=1&modificationDate=1440414807207&a
pi=v2

Overview and history of HELM http://pubs.acs.org/doi/full/10.1021/ci3001925

Angularl)S Tutorials: https://docs.angularjs.org/tutorial/

Code Project Article: Implementing-a-Flowchart-with-SVG-and-Angular)S

SVG Tutorials: https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial

SVG blog: http://www.petercollingridge.co.uk/svg-tutorial/svgs-web

StackOverflow: Placing SVG shapes in a cycle

Modal Dialog in Angular by Adam Albrecht:
http://adamalbrecht.com/2013/12/12/creating-a-simple-modal-dialog-directive-in-angular

-js/

https://pistoiaalliance.atlassian.net/wiki/download/attachments/8716303/Short_form_HELM_Leaflet%202015_08_20%20docx.pdf?version=1&modificationDate=1440414807207&api=v2
https://pistoiaalliance.atlassian.net/wiki/download/attachments/8716303/Short_form_HELM_Leaflet%202015_08_20%20docx.pdf?version=1&modificationDate=1440414807207&api=v2
https://pistoiaalliance.atlassian.net/wiki/download/attachments/8716303/Short_form_HELM_Leaflet%202015_08_20%20docx.pdf?version=1&modificationDate=1440414807207&api=v2
https://docs.angularjs.org/tutorial/
https://docs.angularjs.org/tutorial/
http://www.codeproject.com/Articles/709340/Implementing-a-Flowchart-with-SVG-and-AngularJS
http://www.codeproject.com/Articles/709340/Implementing-a-Flowchart-with-SVG-and-AngularJS
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial
http://www.petercollingridge.co.uk/svg-tutorial/svgs-web
http://stackoverflow.com/questions/13672867/how-to-place-svg-shapes-in-a-circle
http://stackoverflow.com/questions/13672867/how-to-place-svg-shapes-in-a-circle
http://adamalbrecht.com/2013/12/12/creating-a-simple-modal-dialog-directive-in-angular-js/
http://adamalbrecht.com/2013/12/12/creating-a-simple-modal-dialog-directive-in-angular-js/

HELM Editor 2.0 Final Report

9. XML to JSON:
http://www.xml.com/pub/a/2006/05/31/converting-between-xml-and-json.html

http://www.xml.com/pub/a/2006/05/31/converting-between-xml-and-json.html

