Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  • Define the most common research questions in target discovery and validation. Establish an agreement between the project team that these are indeed the core target discovery business questions, and rank order them by vote by perceived relative importance. If such questions are many, pick the top ones. Establish an agreement on how many exactly. One can use this paper as a starting point for listing of relevant competency questions: https://www.sciencedirect.com/science/article/pii/S1359644613001542 (Failure to identify business questions , or picking too many or too few is was a project risk)

  • Open Targets can serve as a publicly available standardized data source for this use case. Validate that Open Targets either has a ready to use Knowledge Graph implementation, or can be converted into a KG with reasonable cost (this is known project riskwas a project risk; we established data availability for the Open Targets as a KG in BioCypher, and this risk is now closed)

  • Select a Large Language Model engine from publicly accessible sources. (Failure to identify a suitable open LLM is was a project risk. The available LLMs were analyzed and this risk is now closed)

Prompt-tuning procedure:

  • Retrieval Augmented Generation (RAG):

    • Ask plain English question using prompt-tuned version of one of the questions from the business questions collection

    • This question is converted into a structured query by an LLM (Failure to generate a proper query for a KG database system is a risk)

    • Execute this query over a structured controlled data source (e.g. Open Targets DB)

    • Convert raw output of the query into human-readable input (by an LLM or by other means)

    • An expert compares this answer or answers with the expected one(s)

  • An accuracy metric is computed + inputs and outputs saved in some DB

  • Prompt-tune the opening plain text question to maximize the output quality

  • Experiment with different modes of using an LLM (such as LLM agents, or query templates, or different representations of the data source schema) to maximize the output quality

  • Repeat this tuning cycle for all business questions in the collection

...

Description

Mitigation

Responsible Party

Failure to identify business questions, or picking too many or too few

Draft appropriate business questions - DONE; but not all business questions can be answered with specific technologies, so must take this factor into account

Lee Harland, John Wise, Bruce Press, Peter Revill

Validate that Open Targets either has a ready to use Knowledge Graph implementation, or can be converted into a KG with reasonable cost

The Hyve
Jordan Ramsdell
Robert Gill
Brian Evarts

Open Targets/EBI:

  • Sebastian Lobentanzer

  • Ellen McDonagh

Failure to identify a suitable LLM

  • See this comparison

  • Recommend to focus on the Cypher query generation ability as the key risk (below)

  • Start with one open-source and one closed-source LLMs (say Mistral and GPT 4) and agree to explore others later, and meanwhile close this risk

Jon Stevens, Etzard Stolte, Helena Deus; Brian Evarts; Wouter Franke, Matthijs van der Zee

Failure to generate a proper query for a KG database system by an LLM

Technology research.

  • See refs 7, 8, 13, 14 below

  • BioCypher by EBI may have this capability already - needs evaluation

The Hyve
Jordan Ramsdell
Robert Gill
Brian Evarts

Open Targets/EBI:

Sebastian Lobentanzer

Ellen McDonagh

Does Open Targets use an ontology?

Yes in general

The Hyve

Failure to download a large volume of data (all of the PubMed as a maximum) for the prompt-tuning of the LLM

CLOSED RISK

This may be unnecessary, TBDis not necessary

Failure to perform local KG comparison with calculation of a score

CLOSED RISK

This is not necessary - we can compare the output manually

Failure to build a prototypical target discovery pipeline on the limited budget in case of mounting technical difficulties

CLOSED: Schedule the project in phases. Aim to answer known unknowns and to establish risk mitigation strategies early.

It is not yet known whether a product will be built. For now the scope is focused on the technology analysis for the POC

Some proprietary LLMs may be censored, thus introducing uncontrollable bias in the answers that they produce

DONE:

CLOSED. Censorship may already be included in the performance scores, so this is taken care of in the comparison of the LLMs. However, there is team preference for open-source and uncensored LLMs

Identified and resolved in the LLM sub-team

...

...