Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Register for AI Community Newsletter

We are running a very active webinar program that highlights diverse use cases in AI and ML in the biotechnology and pharmaceutical industries.

We welcome suggestions for other topics and speakers too. Please contact Vladimir Makarov (vladimir.makarov at pistoiaalliance dot org)

...

23 May 2018

Slides and Talk

...

Prashant Natarajan 

...

A Brief History of AI/ML
  • Big Data/ML/DL/AI - fundamentals and concepts 
  • Data Fidelity
  • Real-life use cases in health & life sciences from their book (www.BigDataCXO.com)
  • Q & A

...

21 June 2018

Slides and talk

...

Demystifying AI – Part 2
  • Considerations for Life Sciences
  • ML 102
  • TIE –Interpretability & Explainability
  • Conversational AI: Bot Basics
  • Q & A

...

1 Oct 2018

Launch Slides

Recording

Register for datathon

...

Drug Repurposing Datathon

  • Datathon launch details - Rare disease drug repurposing
  • More details & register on Datathon

...

9 Oct 2018

More details

Slides and Notes

...

Hosting a AI/ML workshop to allow our community to meet, share ideas and make progress on their AI/ML adoption, implementation planning and impact.

Speakers from across the industry and panels, plus networking

...

18 Oct 2018

Slides

Recording

...

Joint meeting with PRISME forum

Rescheduled from Sep 20

...

Maximizing Value from Healthcare Data Using Machine Learning

  • AI maturity model
  • CoE update and Datathon

...

10 Dec 2018

Slides

Recording

...

Webinar panel:

Terry Stouch,

Jamie Powers,

Isabella Fieirberg

Sirarat Sarntivijai

Jabe Wilson

...

26 Feb 2019

Slides

Recording

...

12 March 2019

Agenda

Slides and Notes

...

Hosting a AI/ML workshop to allow our community to meet, share ideas and make progress on their AI/ML adoption, implementation planning and impact.

Speakers from across the industry and panels, plus networking

...

6 June 2019

Slides

Recording

...

20 June 2019

Slides

Recording

...

Webinar Panel:

  • Aleksandar Poleksic
  • Bruce Aronow
  • Finlay Maclean
  • Jabe Wilson

...

Pistoia Alliance and Elsevier Datathon Report Webinar on Drug Repurposing

In the late Fall and Winter of 2018, the Pistoia Alliance in cooperation with Elsevier and charitable organizations Cures within Reach and Mission: Cure run a datathon aiming to find drugs suitable for treatment of childhood chronic pancreatitis, a rare disease that causes extreme suffering.  The datathon resulted in identification of four candidate compounds in a short time frame of just under three months. In this webinar our speakers will discuss the technologies that made this leap possible.

...

18 September 2019

Slides

Recording

Host: Paula Matos (Pistoia Alliance)

Webinar Panel:

  • Simon Fortenbacher (GSK)
  • Gergely Szabo (Elsevier)
  • Kirk Brote (Brote Consulting)

...

Building Trust and Accountability: The Role User Experience Design Can Play in Artificial Intelligence

Our panelists described the principles of UX design and its importance in the context of AI, and illustrated with case studies of how UX is being applied in AI.

...

22 October 2019

Agenda

...

Hosting a AI/ML workshop to allow our community to meet, share ideas and make progress on their AI/ML adoption, implementation planning and impact.

Summary  of the workshop

...

16 January 2020

Slides

Recording

...

Looking beyond the hype: Applied AI and machine learning in translational medicine

We will discuss possible ways to enable ML methods to be more powerful for discovery and reduce ambiguity within translational medicine, allowing data-informed decision-making to deliver the next generation of diagnostics and therapeutics to patients quicker, at lowered costs, and at scale.

...

7 April 2020

Slides

Recording

...

Automated Molecular Design and the BRADSHAW Platform

Dr Darren Green discusses how data-driven chemoinformatics methods may automate much of what has historically been done by a medicinal chemist, considering what the balance is between AI approaches and human expertise and uses examples from Bradshaw, GSK’s experimental automated design environment to support his presentation.

...

4 May 2020

Slides

Recording

...

  • Craig Rhodes, nVIDIA
  • Nicola Rieke, nVIDIA
  • Jennifer Goldsack, DiMe
  • Tim McCarthy, Pfizer
  • Marissa Dockendorf, Merck

...

How Can Federated AI/ML Learning Support Genomics and Patient Data Analysis to Enable Precision Medicine at Scale?

Organized by the Digital Medicine Program at the Pistoia Alliance and the Digital Medicine (DiMe) Society

How federated learning can help overcome some of the barriers seen in the development of AI-based solutions for pharma, genomics and healthcare? Following the presentation, the panel debate on other elements that could drive the adoption of digital approaches more widely and help answer currently intractable science and business questions.

...

26 June 2020

Recording

...

  • Andrew Prigodich, Pfizer
  • Peter Henstock, Pfizer
  • James Weatherall, AZ
  • John Overington, Medicines Discovery Catapult
  • Harvard Student Team

...

Putting AI into Practice

Is it possible to forecast which of the drug discovery projects would advance to clinical trials?

A talk on "Mining Drug-Target-Disease Trends from Public Data Sources" presented by Andrew Prigodich, and Peter V Henstock from Pfizer and a Harvard University Extension School team (Andrew Wang, Bhavani Shekhawat, Charlie Flanagan, Derek Kinzo, Gerald Ding, Ramandeep Hariai, Roman Burdakov), followed by a panel discussion by James Weatherall, AstraZeneca, John Overington, Medicines Discovery Catapult, and Peter Henstock, Pfizer.

...

9 December 2020

Recording

...

  • Prof. Atul Butte, UCSF
  • Dr. Beau Norgot, Anthem
  • Dr. Jen Harrow, ELIXIR EU
  • Dr. Fotis Psomopoulos, ELIXIR EU
  • Prof. Tom Lenaerts,  Université Libre de Bruxelles

...

Minimal Information Standard for an AI Model

Artificial intelligence and machine learning models are used more and more often in the development of pharmaceuticals and as software components in medical devices. However, because there has been a lack of clear reporting standards, many clinically relevant models have been reported with insufficient details to properly assess their risks and benefits. Historically, this has made the science underlying these products irreproducible, deployment and comparison of AI algorithmic solutions hard, and may lead to the users of these products facing unequal or unforeseen harms. Therefore a standard for reporting of biomedically-relevant AI/ML models is necessary. In this panel discussion we will brainstorm options for the transparent reporting of AI algorithms in biology and medicine. Participants include Prof. Atul Butte and Dr. Beau Norgot, authors of the MI-CLAIM checklist recently published in Nature, and Drs. Jen Harrow, Fotis Psomopoulos, and Tom Lenaerts, who are actively working on the standards for AI and ML in Europe.

...

20 January 2021

Recording

  • Prof. Alexandar Poleksic, UNI
  • Prof. Lei Xie, CUNY

...

AI for Drug Repurposing

Chemical-induced gene expression profiles provide a mechanistic signature of phenotypic response, and are thus promising for drug repurposing. However, the use of such data is limited by their sparseness, unreliability, and relatively low throughput.

Our speakers, Drs. Aleksandar Poleksic and Lei Xie, describe two new computational techniques for prediction of the differential gene expression profiles perturbed by de novo chemicals and inference of drug-disease associations.

...

27 January 2021

Recording

...

Panel discussion:

  • Jérôme Windsor, PharmD, MBA (Moderator), Advisor, Boston Digital Bio Consulting
  • Karine Seymour, MBA, CIO, Medexprim
  • Tim McCarthy, PhD, MBA, VP and Digital Medicine Head, Pfizer
  • Prof. Laure Fournier, Academic Radiologist, Hôpitaux de Paris
  • Angel Alberich-Bayarri, PhD, CEO, Quibim (Quantitative Imaging Biomarkers in Medicine)

...

Imaging Biomarkers

Biomarkers have become an essential part of the drug discovery and development process. A biomarker-driven approach to developing targeted therapies and patient selection strategies has the potential to increase success in the drug development process, decrease costs, and ultimately improve patient outcomes.

But what about imaging biomarkers? Usually obtained from PET, MRI, and CT scans, they comprise measurements of structural and metabolic features of the body that over time are used to assess disease progression and response to treatment. Imaging biomarkers are an ideal method to draw evidence from retrospective data and can be used both as inclusion criteria—to select relevant cohorts of patients and output data—to quantify responses to treatments.

  • How to use imaging in early clinical trials for an increased confidence in the target and in the new drug discovery?
  • From the investigator perspective, how to best combine standard imaging and advanced, personalized phenotypic endpoints in clinical trials?
  • Radiomics, ML and AI, digital patient, synthetic control arms .. :  Where the future of imaging is?
  • How to massively access real world quality data to create data lake and to develop new imaging markers?

...

15 February 2021

Recording

...

Real-World Evidence - Levering AI and Analytics For Real Value and Lasting Impact

Real-world evidence is not new, but with advances in processes, technology, policy, and analytics, is becoming more accessible and usable. RWE is being used to drive real outcomes and lasting impact for pharma, patients/subjects, and other participants in the continuum of care. At the foundation of RWE is data – behaviors, patterns, computational biomarkers, phenotypic/genomic data, imaging, outcomes, and social determinants of health.

The RWE trends that are happening in life sciences and biological sciences are driven by

  • Datafication is driven by the availability of diverse data – big, small, and everything in between
  • Competitive advantages
  • Reducing the time for regulatory approvals
  • Cost and outcomes

While data and descriptive analytics have been in vogue for years, advances in processing RWE – in combination with RCTs via data science, machine/deep learning, and advanced analytics – are creating new value for Pharma companies across the board – not just in R&D and pharmacovigilance but also extending into economic value, sales & marketing, affordable therapies, and patient outcomes.

More importantly, with the success of these analytics and AI efforts, we will see an increasing appetite for more types of RWE – beyond EMRs, all-claims, and commercial data sets – into patient-reported experiences, wearables, at-home devices, and implants.

Creating value at scale and achieving lasting impact is important, doable, and repeatable. This presentation will provide practical recommendations on how to put this tsunami of RWE and data variety to work using the IMPACT framework.

We will conclude with a discussion of representative use cases that pharma and biotechnology organizations can use to move the needle from a product focus to customized/personalized therapies, precision medicine, and population health.

Speaker: Prashant Natarajan, Vice President of AI & Analytics Solutions, H2O.ai and Pistoia Alliance AI CoE Advisory Committee Member

Please note: This presentation was originally delivered during the Qiagen Digital Insights hackathon in February 2021 and is being shared with permission. All rights reserved.

...

25 March 2021

Recording

...

The Pistoia Alliance DataFAIRy Team:

  • Isabella Feierberg, Associate Principal Scientist, AstraZeneca
  • Dana Vanderwall, Director of Biology & Preclinical IT, Bristol Myers Squibb
  • Rama Balakrishnan, Biomedical Ontology Specialist, Genentech
  • Martin Romacker, Senior Principal Scientist in Scientific Solution Engineering and Architecture, Roche
  • Samantha Jeschonek, Research Scientist, Collaborative Drug Discovery
  • Timothy Ikeda, Automation Principal Scientist, AstraZeneca
  • Gabriel Backiananthan, Novartis
  • Anosha Siripala, Technical Associate Director, Scientific Products, Novartis Institutes for BioMedical Research (NIBR)

Lessons Learned in a Pilot BioAssay Annotation Project

In 2020, a team of scientists from AstraZeneca, Bristol Myers Squibb, Novartis, and Roche set forth to find a way to convert unstructured biological assay descriptions into FAIR information objects.

...

21 April 2021

There are 2 sessions: 21 April at 8-9 am PST, and a repeat for the APAC time zones on 22nd April 4-6:30 pm

...

Pistoia Alliance AI CoE, FAIR, and DataFAIRy

Invited short talk at the Research Data Alliance Virtual Plenary "FAIR 4 ML"; see full agenda and the direct link to our session "Defining FAIR for AI"

...

21 April 2021

Talk starts at 12:20 pm EDT (9:20 am PST)

...

  • Isabella Feierberg, Associate Principal Scientist, AstraZeneca
  • Dana Vanderwall, Director of Biology & Preclinical IT, Bristol-Myers Squibb
  • Rama Balakrishnan, Biomedical Ontology Specialist, Genentech
  • Samantha Jeschonek, Product Manager, CDD

...

Panel Discussion: The Pistoia Alliance DataFAIRy Project

Part of the Pistoia Alliance Conference - Collaborative R&D in Action

...

5 May 2021

Recording

...

Panelists:

  • Helena Deus (ZS)
  • Peter Henstock (Pfizer)
  • Margi Sheth, AstraZeneca
  • Prashant Natarajan, Vice President of AI & Analytics Solutions, H2O.ai

...

Technical strategies against bias in AI

There is an increasing number of reports discussing the urgent need for addressing bias in decision making algorithms in healthcare. In fact, a recent JAMA commentary published in 2021 (link) highlighted systemic kidney transplantation inequities for black individuals. With AI-based and machine learning techniques increasingly playing a role in healthcare decision making, it becomes necessary to discuss not only the ethical implications but solutions and approaches to detect and reduce the impact of computer bias in healthcare. The Pistoia Alliance is happy to announce the "Technical strategies against bias in AI", which will bring together industry experts to share lessons learned and discuss possible solutions.

...

2 June 2021

8 am PST = 11 am EST = 4 pm London

...

  • Isabella Feierberg (AZ)
  • Samantha Jeschoneck (CDD)

...

DataFAIRy Bioassay Annotation

Invited short talk at the Cambridge Cheminformatics meeting

...

2 June 2021

Register for AI Community Newsletter


We are running a very active webinar program that highlights diverse use cases in AI and ML in the biotechnology and pharmaceutical industries.

We welcome suggestions for other topics and speakers too. Please contact Vladimir Makarov (vladimir.makarov at pistoiaalliance dot org)



4 November 2021

8 am PST = 11 am EST = 4 pm London

Recording

23 February 2022

8 am PST = 11 am EST = 4 pm London

Recording

28 July 2021

8 am PST = 11 am EST = 4 pm London

Recording

8 September 2021

8 am PST = 11 am EST = 4 pm London

Recording

16 February 2023

8 am PST = 11 am EST = 4 pm London

Future Event

SessionDateSpeakersTopics & Themes
1

23 May 2018

Slides and Talk

Prashant Natarajan 
A Brief History of AI/ML
  • Big Data/ML/DL/AI - fundamentals and concepts 
  • Data Fidelity
  • Real-life use cases in health & life sciences from their book (www.BigDataCXO.com)
  • Q & A
2

21 June 2018

Slides and talk

Prashant Natarajan 
Demystifying AI – Part 2
  • Considerations for Life Sciences
  • ML 102
  • TIE –Interpretability & Explainability
  • Conversational AI: Bot Basics
  • Q & A
Datathon

1 Oct 2018

Launch Slides

Recording

Register for datathon


Datathon launch

Drug Repurposing Datathon

  • Datathon launch details - Rare disease drug repurposing
  • More details & register on Datathon
AI/ML Workshop

9 Oct 2018

More details

Slides and Notes

CoE AI Workshop and network meeting

Hosting a AI/ML workshop to allow our community to meet, share ideas and make progress on their AI/ML adoption, implementation planning and impact.

Speakers from across the industry and panels, plus networking

3

18 Oct 2018

Slides

Recording

Joint meeting with PRISME forum

Rescheduled from Sep 20

Maximizing Value from Healthcare Data Using Machine Learning

  • AI maturity model
  • CoE update and Datathon
4

10 Dec 2018

Slides

Recording

Webinar panel:

Terry Stouch,

Jamie Powers,

Isabella Fieirberg

Sirarat Sarntivijai

Jabe Wilson

Matters in data quality: quality scores for data sets and individual data items; FAIR annotations for methods by which data are obtained; Value of old data vs new. Value of even new data on its own and how that can change depending on how it's developed, stored, labeled  retrieved, and interpreted.  How data and its use can change with age. Different needs of need of the level of quality of the data. How the need for  level of  quality and variations  might differ between methods of analysis. The same data might be considered both junk and useful depending on need; ....  PLUS standards for all of the above.
5

26 Feb 2019

Slides

Recording

Drs. Alex Tropsha and Ola EngkvistAI/ML in Drug Design - use neural nets to generate new molecules that are synthetically accessible and fit specified properties.
AI/ML Workshop

12 March 2019

Agenda

Slides and Notes

CoE AI Workshop and network meeting

Hosting a AI/ML workshop to allow our community to meet, share ideas and make progress on their AI/ML adoption, implementation planning and impact.

Speakers from across the industry and panels, plus networking

6

6 June 2019

Slides

Recording

Prof. John OveringtonProf. John Overington, the CIO of the Medicines Discovery Catapult described the AssayNet project and its very far reaching implications.
7

20 June 2019

Slides

Recording

Webinar Panel:

  • Aleksandar Poleksic
  • Bruce Aronow
  • Finlay Maclean
  • Jabe Wilson

Pistoia Alliance and Elsevier Datathon Report Webinar on Drug Repurposing

In the late Fall and Winter of 2018, the Pistoia Alliance in cooperation with Elsevier and charitable organizations Cures within Reach and Mission: Cure run a datathon aiming to find drugs suitable for treatment of childhood chronic pancreatitis, a rare disease that causes extreme suffering.  The datathon resulted in identification of four candidate compounds in a short time frame of just under three months. In this webinar our speakers will discuss the technologies that made this leap possible.

8

18 September 2019

Slides

Recording

Host: Paula Matos (Pistoia Alliance)

Webinar Panel:

  • Simon Fortenbacher (GSK)
  • Gergely Szabo (Elsevier)
  • Kirk Brote (Brote Consulting)


Building Trust and Accountability: The Role User Experience Design Can Play in Artificial Intelligence

Our panelists described the principles of UX design and its importance in the context of AI, and illustrated with case studies of how UX is being applied in AI.

FAIR, AI and ML workshop

22 October 2019

Agenda

Joint Workshop by the FAIR Implementation Project team and AI/ML CoE

Hosting a AI/ML workshop to allow our community to meet, share ideas and make progress on their AI/ML adoption, implementation planning and impact.

Summary  of the workshop

9

16 January 2020

Slides

Recording

Talk by Dr. Dennis Wang (University of Sheffield) followed by a panel discussion with Mr. Albert Wang (BMS)

Looking beyond the hype: Applied AI and machine learning in translational medicine

We will discuss possible ways to enable ML methods to be more powerful for discovery and reduce ambiguity within translational medicine, allowing data-informed decision-making to deliver the next generation of diagnostics and therapeutics to patients quicker, at lowered costs, and at scale.

10

7 April 2020

Slides

Recording

Dr. Darren Green, GSK

Automated Molecular Design and the BRADSHAW Platform

Dr Darren Green discusses how data-driven chemoinformatics methods may automate much of what has historically been done by a medicinal chemist, considering what the balance is between AI approaches and human expertise and uses examples from Bradshaw, GSK’s experimental automated design environment to support his presentation.

11

4 May 2020

Slides

Recording

  • Craig Rhodes, nVIDIA
  • Nicola Rieke, nVIDIA
  • Jennifer Goldsack, DiMe
  • Tim McCarthy, Pfizer
  • Marissa Dockendorf, Merck

How Can Federated AI/ML Learning Support Genomics and Patient Data Analysis to Enable Precision Medicine at Scale?

Organized by the Digital Medicine Program at the Pistoia Alliance and the Digital Medicine (DiMe) Society

How federated learning can help overcome some of the barriers seen in the development of AI-based solutions for pharma, genomics and healthcare? Following the presentation, the panel debate on other elements that could drive the adoption of digital approaches more widely and help answer currently intractable science and business questions.

12

26 June 2020

Recording

  • Andrew Prigodich, Pfizer
  • Peter Henstock, Pfizer
  • James Weatherall, AZ
  • John Overington, Medicines Discovery Catapult
  • Harvard Student Team

Putting AI into Practice

Is it possible to forecast which of the drug discovery projects would advance to clinical trials?

A talk on "Mining Drug-Target-Disease Trends from Public Data Sources" presented by Andrew Prigodich, and Peter V Henstock from Pfizer and a Harvard University Extension School team (Andrew Wang, Bhavani Shekhawat, Charlie Flanagan, Derek Kinzo, Gerald Ding, Ramandeep Hariai, Roman Burdakov), followed by a panel discussion by James Weatherall, AstraZeneca, John Overington, Medicines Discovery Catapult, and Peter Henstock, Pfizer.

13

9 December 2020

Recording

  • Prof. Atul Butte, UCSF
  • Dr. Beau Norgot, Anthem
  • Dr. Jen Harrow, ELIXIR EU
  • Dr. Fotis Psomopoulos, ELIXIR EU
  • Prof. Tom Lenaerts,  Université Libre de Bruxelles

Minimal Information Standard for an AI Model

Artificial intelligence and machine learning models are used more and more often in the development of pharmaceuticals and as software components in medical devices. However, because there has been a lack of clear reporting standards, many clinically relevant models have been reported with insufficient details to properly assess their risks and benefits. Historically, this has made the science underlying these products irreproducible, deployment and comparison of AI algorithmic solutions hard, and may lead to the users of these products facing unequal or unforeseen harms. Therefore a standard for reporting of biomedically-relevant AI/ML models is necessary. In this panel discussion we will brainstorm options for the transparent reporting of AI algorithms in biology and medicine. Participants include Prof. Atul Butte and Dr. Beau Norgot, authors of the MI-CLAIM checklist recently published in Nature, and Drs. Jen Harrow, Fotis Psomopoulos, and Tom Lenaerts, who are actively working on the standards for AI and ML in Europe.

14

20 January 2021

Recording

  • Prof. Alexandar Poleksic, UNI
  • Prof. Lei Xie, CUNY


AI for Drug Repurposing

Chemical-induced gene expression profiles provide a mechanistic signature of phenotypic response, and are thus promising for drug repurposing. However, the use of such data is limited by their sparseness, unreliability, and relatively low throughput.

Our speakers, Drs. Aleksandar Poleksic and Lei Xie, describe two new computational techniques for prediction of the differential gene expression profiles perturbed by de novo chemicals and inference of drug-disease associations.

15

27 January 2021

Recording

Panel discussion:

  • Jérôme Windsor, PharmD, MBA (Moderator), Advisor, Boston Digital Bio Consulting
  • Karine Seymour, MBA, CIO, Medexprim
  • Tim McCarthy, PhD, MBA, VP and Digital Medicine Head, Pfizer
  • Prof. Laure Fournier, Academic Radiologist, Hôpitaux de Paris
  • Angel Alberich-Bayarri, PhD, CEO, Quibim (Quantitative Imaging Biomarkers in Medicine)

Imaging Biomarkers

Biomarkers have become an essential part of the drug discovery and development process. A biomarker-driven approach to developing targeted therapies and patient selection strategies has the potential to increase success in the drug development process, decrease costs, and ultimately improve patient outcomes.

But what about imaging biomarkers? Usually obtained from PET, MRI, and CT scans, they comprise measurements of structural and metabolic features of the body that over time are used to assess disease progression and response to treatment. Imaging biomarkers are an ideal method to draw evidence from retrospective data and can be used both as inclusion criteria—to select relevant cohorts of patients and output data—to quantify responses to treatments.

  • How to use imaging in early clinical trials for an increased confidence in the target and in the new drug discovery?
  • From the investigator perspective, how to best combine standard imaging and advanced, personalized phenotypic endpoints in clinical trials?
  • Radiomics, ML and AI, digital patient, synthetic control arms .. :  Where the future of imaging is?
  • How to massively access real world quality data to create data lake and to develop new imaging markers?
16

15 February 2021

Recording

Prashant Natarajan, Vice President of AI & Analytics Solutions, H2O.ai

Real-World Evidence - Levering AI and Analytics For Real Value and Lasting Impact

Real-world evidence is not new, but with advances in processes, technology, policy, and analytics, is becoming more accessible and usable. RWE is being used to drive real outcomes and lasting impact for pharma, patients/subjects, and other participants in the continuum of care. At the foundation of RWE is data – behaviors, patterns, computational biomarkers, phenotypic/genomic data, imaging, outcomes, and social determinants of health.

The RWE trends that are happening in life sciences and biological sciences are driven by

  • Datafication is driven by the availability of diverse data – big, small, and everything in between
  • Competitive advantages
  • Reducing the time for regulatory approvals
  • Cost and outcomes

While data and descriptive analytics have been in vogue for years, advances in processing RWE – in combination with RCTs via data science, machine/deep learning, and advanced analytics – are creating new value for Pharma companies across the board – not just in R&D and pharmacovigilance but also extending into economic value, sales & marketing, affordable therapies, and patient outcomes.

More importantly, with the success of these analytics and AI efforts, we will see an increasing appetite for more types of RWE – beyond EMRs, all-claims, and commercial data sets – into patient-reported experiences, wearables, at-home devices, and implants.

Creating value at scale and achieving lasting impact is important, doable, and repeatable. This presentation will provide practical recommendations on how to put this tsunami of RWE and data variety to work using the IMPACT framework.

We will conclude with a discussion of representative use cases that pharma and biotechnology organizations can use to move the needle from a product focus to customized/personalized therapies, precision medicine, and population health.

Speaker: Prashant Natarajan, Vice President of AI & Analytics Solutions, H2O.ai and Pistoia Alliance AI CoE Advisory Committee Member

Please note: This presentation was originally delivered during the Qiagen Digital Insights hackathon in February 2021 and is being shared with permission. All rights reserved.

17

25 March 2021

Recording

The Pistoia Alliance DataFAIRy Team:

  • Isabella Feierberg, Associate Principal Scientist, AstraZeneca
  • Dana Vanderwall, Director of Biology & Preclinical IT, Bristol Myers Squibb
  • Rama Balakrishnan, Biomedical Ontology Specialist, Genentech
  • Martin Romacker, Senior Principal Scientist in Scientific Solution Engineering and Architecture, Roche
  • Samantha Jeschonek, Research Scientist, Collaborative Drug Discovery
  • Timothy Ikeda, Automation Principal Scientist, AstraZeneca
  • Gabriel Backiananthan, Novartis
  • Anosha Siripala, Technical Associate Director, Scientific Products, Novartis Institutes for BioMedical Research (NIBR)

Lessons Learned in a Pilot BioAssay Annotation Project

In 2020, a team of scientists from AstraZeneca, Bristol Myers Squibb, Novartis, and Roche set forth to find a way to convert unstructured biological assay descriptions into FAIR information objects.

In this talk, we will present the lessons learned in the pilot project to annotate bioassay descriptions (bioassay) en masse and will chart a way to expand this effort in the future.

18

21 April 2021

There are 2 sessions: 21 April at 8-9 am PST, and a repeat for the APAC time zones on 22nd April 4-6:30 pm

Dr. Vladimir Makarov, PhD, MBA, Pistoia Alliance

Pistoia Alliance AI CoE, FAIR, and DataFAIRy

Invited short talk at the Research Data Alliance Virtual Plenary "FAIR 4 ML"; see full agenda and the direct link to our session "Defining FAIR for AI"

19

21 April 2021

Talk starts at 12:20 pm EDT (9:20 am PST)

  • Isabella Feierberg, Associate Principal Scientist, AstraZeneca
  • Dana Vanderwall, Director of Biology & Preclinical IT, Bristol-Myers Squibb
  • Rama Balakrishnan, Biomedical Ontology Specialist, Genentech
  • Samantha Jeschonek, Product Manager, CDD

Panel Discussion: The Pistoia Alliance DataFAIRy Project

Part of the Pistoia Alliance Conference - Collaborative R&D in Action

20

5 May 2021

Recording

Panelists:

  • Helena Deus (ZS)
  • Peter Henstock (Pfizer)
  • Margi Sheth, AstraZeneca
  • Prashant Natarajan, Vice President of AI & Analytics Solutions, H2O.ai

Technical strategies against bias in AI

There is an increasing number of reports discussing the urgent need for addressing bias in decision making algorithms in healthcare. In fact, a recent JAMA commentary published in 2021 (link) highlighted systemic kidney transplantation inequities for black individuals. With AI-based and machine learning techniques increasingly playing a role in healthcare decision making, it becomes necessary to discuss not only the ethical implications but solutions and approaches to detect and reduce the impact of computer bias in healthcare. The Pistoia Alliance is happy to announce the "Technical strategies against bias in AI", which will bring together industry experts to share lessons learned and discuss possible solutions.

21

2 June 2021

8 am PST = 11 am EST = 4 pm London

  • Isabella Feierberg (AZ)
  • Samantha Jeschoneck (CDD)

DataFAIRy Bioassay Annotation

Invited short talk at the Cambridge Cheminformatics meeting

22

2 June 2021

8 am PST = 11 am EST = 4 pm London


Recording

  • Matt Segall, CEO, Optibrium
  • Samar Mahmoud, Senior Scientist, Optibrium
  • Fabio Broccatelli, Senior Scientist, Genentech

Optimizing Kinase Profiling Programs with Deep Learning

Join Genentech and Optibrium for this discussion of Alchemite™, a novel deep learning approach, and its application to optimizing kinase profiling programs. Using Alchemite reduces the number of kinase assays required to accurately predict the full kinase selectivity profile, effectively accelerating experimental programs.

The team will demonstrate the method’s performance on a data set of approximately 650 kinases and 10,000 compounds, significantly outperforming state-of-the-art quantitative structure-activity relationship (QSAR) approaches, including multi-target deep learning. Furthermore, we will discuss Alchemite’s unique ability to provide reliable prediction-uncertainty-estimates that enable the selection of the most informative kinase assays and which compounds to test.

23

30 June 2021

8 am PST = 11 am EST = 4 pm London

Recording

Post-webinar Q&A

  • Victor Dillard, Commercial Operations Director, Owkin
  • Hugo Ceulemans, Scientific Director Discovery Data Science, Johnson & Johnson
  • Dr. Guillaume Bataillon, oncologist at Institut Curie, a partner of the HealthChain project 
Building the future of collaborative research with federated learning

Federated learning is a new machine-learning paradigm where multiple partners can collaborate on complex research questions without centralising or sharing data outside of their organizations. This ‘collaborative machine learning’ approach enables data science teams to work on larger and more diverse datasets, previously inaccessible, boosting the predictive power of machine learning algorithms and enhancing AI capabilities. By overcoming privacy and confidentiality concerns, companies can build partnerships and consortia and retain their competitive edge. For example, the MELLODDY consortium pioneers federated learning-based drug discovery across 10 pharma companies benefiting from the collective insights of the world’s largest cheminformatics data network where each participant retains full confidentiality and governance over their molecular libraries.
Federated learning in healthcare can also facilitate knowledge transfer between medical researchers and data scientists, bridging the gap between AI and clinical care. The HealthChain project is a successful demonstration that an algorithm can be trained on siloed histology images, distributed across different hospitals, to predict treatment responses in breast cancer. Together with clinical, research and technology partners we demonstrated improved robustness and performance of the technology over locally trained algorithms. With the platform deployed and used reliably in a production environment, the stage is set for further collaborative research projects and eventually clinical applications in cancer, heart failure and other therapeutic areas.

 

24

28 July 2021

8 am PST = 11 am EST = 4 pm London


Recording

  • Loganathan Kumarasamy, Head of Scientific Informatics, Validation and Compliance services, North America, Zifo R&D
  • Pat Baird, Regulatory Head of Global Software Standards, Phillips
  • Nathan A. Carrington, Ph.D.
    Head of Digital Health and Innovation
    Global Regulatory Policy and Intelligence
    Roche Diagnostics

Challenges in the regulation of AI Software as a Medical Device

Software as a medical device (SaMD) that leverages artificial intelligence (AI) has the opportunity to reshape healthcare. It also raises unique challenges for developers and regulators. As healthcare advances and digital solutions leveraging AI become more prevalent, it is important that medical device regulatory frameworks also advance to match the speed of innovation. The panel will review key terms related to AI SaMD and describe unique regulatory challenges associated with devices that leverage AI. Additionally, the panel will explore novel regulatory approaches to the regulation of AI SaMD currently under consideration by international regulatory authorities.

25

8 September 2021

8 am PST = 11 am EST = 4 pm London


Recording

  • Andreas Bender, Reader for Molecular Informatics at Cambridge University, and Director Digital Life Sciences at Nuvisan/ICB

Artificial Intelligence in Drug Discovery – What is Realistic, What are Illusions?

Although artificial intelligence (AI) has had a profound impact on areas such as image recognition, comparable advances in drug discovery are rare. We will discuss the stages of drug discovery in which improvements in the time taken, success rate or affordability will have the most profound overall impact on bringing new drugs to market. Changes in clinical success rates will have the most profound impact on improving success in drug discovery; in other words, the quality of decisions regarding which compound to take forward (and how to conduct clinical trials) are more important than speed or cost. Although current advances in AI focus on how to make a given compound, the question of which compound to make, using clinical efficacy and safety-related end points, has received significantly less attention. As a consequence, current proxy measures and available data cannot fully utilize the potential of AI in drug discovery, in particular when it comes to drug efficacy and safety in vivo. Thus, addressing the questions of which data to generate and which end points to model will be key to improving clinically relevant decision-making in the future.

26

4 November 2021

8 am PST = 11 am EST = 4 pm London


Recording

  • Jacob Aptekar, MD, PhD, Senior Director of Product Management, Acorn AI, a part of Dassault Systems

How Synthetic Data Is Unlocking a Decade's Worth of Clinical Trial Data to Power a New Era of Drug Development

Historic clinical trial data (HCT) is emerging as an important source of evidence across clinical development. Data from past trials is often superior to real-world data from EMR records etc. as it is more structured, complete, 100% traceable and contains the typical endpoints and covariates captured in a clinical trial. Regulators have lately been supportive of the use of HCT data with both the FDA and EMA approving hybrid trials: phase 3 trials where patients from the control arm have been replaced by synthetic patients from past trials. This talk will explore methodologies and use cases for Synthetic Patients - 'digital twins' of real patients that replicate their behavior to a very high degree. Synthetic Patients enable easy sharing of patient-level data without risk of subject-level or sponsor disclosure while allowing data scientists to mine deep insights on patient characteristics and behavior.

27

23 February 2022

8 am PST = 11 am EST = 4 pm London


Recording

  • Martin-Immanuel Bittner, MD, DPhil, FRSA, the Chief Executive Officer and co-founder of Arctoris

Combining Robotics and Machine Learning for Accelerated Drug Discovery

Artificial intelligence has an increasing impact on drug discovery and development, offering opportunities to identify novel targets, hit, and lead-like compounds in accelerated timeframes. However, the success of any AI/ ML model depends on the quality of the input data, and the speed with which in silico predictions can be validated in vitro. The talk will cover laboratory automation and robotics and the benefits they offer in terms of quality and speed of data generation synergized with AI/ ML-powered drug discovery approaches. The talk will cover some of the general trends in the industry, and also highlight successfully implemented case studies that show how the combination of robotics and AI/ ML lead to accelerated project timelines and superior research outputs. 

28

12 May 2022

8 am PST = 11 am EST = 4 pm London


Recording

  • Karl Leswing, Machine Learning Tech Lead, Schrödinger

AI/ML Webinar: AI Tools for Drug Design - AutoDesigner, a De Novo Design Algorithm

The lead optimization stage of a drug discovery program generally involves the design, synthesis, and assaying of hundreds to thousands of compounds. The design phase is usually carried out via traditional medicinal chemistry approaches and/or structure-based drug design (SBDD) when suitable structural information is available. Two of the major limitations of this approach are (1) difficulty in rapidly designing potent molecules that adhere to myriad project criteria, or the multiparameter optimization (MPO) problem, and (2) the relatively small number of molecules explored compared to the vast size of chemical space. To address these limitations we have developed AutoDesigner, a de novo design algorithm.

29

29 June 2022

8 am PST = 11 am EST = 4 pm London

Recording


  • Prashant Natarajan, H2O.ai
  • Peter Henstock, Pfizer

Valuation of AI Technology Investments

Today the hype that surrounded artificial intelligence in the previous years is largely gone, and the industry practitioners are looking for solid use cases and proof of value. Prashant Natarajan, VP of H2O.ai, and Dr. Peter Henstock, ML&AI Technical Lead, Pfizer, will discuss the methods for valuation of AI investments in the pharmaceutical industry.

30

3 August 2022

8 am PST = 11 am EST = 4 pm London

Recording

  • Navdeep Gill, Engineering Lead, H20.ai
  • Chas Nelson, Founder, CTO, and Director, gliff.ai

Trustworthy AI

Our speakers, Navdeep Gill (H2O.ai) and Chas Nelson (gliff.ai) will present a perspective on trustworthy and responsible AI. We will discuss various components that contribute to responsible AI and the new ANSI standard “ANSI/CTA 2090 Use of Artificial Intelligence in Health Care: Trustworthiness” and the ways to implement trustworthy and responsible AI in practice covering the whole artificial intelligence lifecycle.

31

19 October 2022

8 am PST = 11 am EST = 4 pm London

Recording

  • William Shirley, Sr. Director Structural Chemistry, Gilead Sciences
  • Ton van Daelen, Portfolio Director, Dassault Systemes / BIOVIA

Generative Therapeutics Design: Accelerating Drug Discovery with AI and Machine Learning

The application of Artificial Intelligence/Machine Learning (AI/ML) methods in drug discovery are maturing and their utility and impact is likely to permeate many aspects of drug discovery. Numerous methods, however, utilize structure-activity relationship (SAR) data without explicit use of 3D structural information of the ligand protein complex. Gilead is using BIOVIA’s Generative Therapeutics Design (GTD) method to take advantage of 3D structural models, i.e. pharmacophoric representation of ligand protein interaction as well as typical docking/scoring steps. Using Gilead’s SAR data set pertaining to the discovery of spleen tyrosine kinase (SYK) inhibitors Entospletinib and Lanraplenib they found that common types of problems in medicinal chemistry can be effectively addressed via GTD.

32

16 February 2023

8 am PST = 11 am EST = 4 pm London


Recording

  • Dana Vanderwall, Pistoia Alliance
  • Ellen Berg, Insitro
  • Jason Harris, CDD
  • Charles Schmitt, NIEHS

FAIR Assay Annotation Project by the Pistoia Alliance and the NIH

This is a webinar for the NIEHS audience to inform the NIH about the progress in the Pistoia Alliance FAIR Assay Annotation project (a.k.a. "DataFAIRy") and to brainstorm the future collaboration opportunities between the Pistoia Alliance and the NIH. The event itself is limited to the NIH participants and the PA speakers, but the recording may be made publicly available, subject to agreement with the NIEHS.

33

29 March 2023

7 am PST = 10 am EST = 3 pm London



Recording TBA

  • Joe Mullen, Director of Technical Consultants, SciBite

How Important is Subject Matter Expertise in Life Sciences When Using Technology and Artificial Intelligence?

Sponsored Event

With recent developments in technology, and the accessibility of artificial intelligence models, one must consider the importance of subject matter expertise in ensuring these are used in the most applicable and accurate settings. Further highlighted during a recent well-documented chatbot unveiling, even incredibly well funded efforts can provide factual errors that will only be spotted by such experts. This expert input is even more important in the highly ambiguous, synonymous and complex domain of life sciences. Here, we cover the importance of such expertise in the development, fine-tuning as well as application of, technologies, including artificial intelligence, in the life sciences – also touching on how these can impact end users.


34

5 April 2023


8 am PST = 11 am EST = 4 pm London


Recording

Slides

Points made by panelists


  • Prashant Natarajan, General Manager, Health & Life Sciences, H2O.ai

  • Bikalpa Neupane, PhD, Director, Advanced Technologies & Experimentation, Takeda

  • Christophe Chabbert, PhD, Senior Scientist, Discovery Informatics, Roche
  • Natalja Kurbatova, Lead Data Scientist, Zifo R&D

Good Machine Learning Practices by the Pistoia Alliance AI CoI

The PA GMLP Team

Starting in 2021, a team of Pistoia Alliance colleagues conducted in-depth business analysis centered on the use of AI in the pharmaceutical enterprise, and identified common use cases, challenges, and best practices for application of AI, specific to particular personas. This webinar presents the interim report of the results to-date, followed by the panel discussion by the members of the Pistoia Alliance GMLP CoI.

35

10 May 2023

8 am PST = 11 am EST = 4 pm London


Recording

  • Matt Segall, CEO, Optibrium
  • Samar Mahmoud, Senior Scientist, Optibrium
  • Fabio Broccatelli, Senior Scientist, Genentech

Optimizing Kinase Profiling Programs with Deep Learning

Join Genentech and Optibrium for this discussion of Alchemite™, a novel deep learning approach, and its application to optimizing kinase profiling programs. Using Alchemite reduces the number of kinase assays required to accurately predict the full kinase selectivity profile, effectively accelerating experimental programs.

The team will demonstrate the method’s performance on a data set of approximately 650 kinases and 10,000 compounds, significantly outperforming state-of-the-art quantitative structure-activity relationship (QSAR) approaches, including multi-target deep learning. Furthermore, we will discuss Alchemite’s unique ability to provide reliable prediction-uncertainty-estimates that enable the selection of the most informative kinase assays and which compounds to test.

2330 June 2021
  • Berke Buyukkucak, Chief Executive Officer & Founder, Superbio.ai

Mobilizing Machine Learning Community for Biology

Superbio.ai provides datasets, pre-trained AI models, benchmarks, visualization and inference tools, all in a no-code cloud environment, empowering scientists to advance their research with community-driven machine learning. In this webinar, company founder and CEO Berke Buyukkucak will describe his work to democratize the Artificial Intelligence.

3626Jacob Aptekar, MD, PhD, Senior Director of Product Management, Acorn AI, a part of Dassault Systems

How Synthetic Data Is Unlocking a Decade's Worth of Clinical Trial Data to Power a New Era of Drug Development

Historic clinical trial data (HCT) is emerging as an important source of evidence across clinical development. Data from past trials is often superior to real-world data from EMR records etc. as it is more structured, complete, 100% traceable and contains the typical endpoints and covariates captured in a clinical trial. Regulators have lately been supportive of the use of HCT data with both the FDA and EMA approving hybrid trials: phase 3 trials where patients from the control arm have been replaced by synthetic patients from past trials. This talk will explore methodologies and use cases for Synthetic Patients - 'digital twins' of real patients that replicate their behavior to a very high degree. Synthetic Patients enable easy sharing of patient-level data without risk of subject-level or sponsor disclosure while allowing data scientists to mine deep insights on patient characteristics and behavior.

27Martin-Immanuel Bittner, MD, DPhil, FRSA, the Chief Executive Officer and co-founder of Arctoris

Combining Robotics and Machine Learning for Accelerated Drug Discovery

Artificial intelligence has an increasing impact on drug discovery and development, offering opportunities to identify novel targets, hit, and lead-like compounds in accelerated timeframes. However, the success of any AI/ ML model depends on the quality of the input data, and the speed with which in silico predictions can be validated in vitro. The talk will cover laboratory automation and robotics and the benefits they offer in terms of quality and speed of data generation synergized with AI/ ML-powered drug discovery approaches. The talk will cover some of the general trends in the industry, and also highlight successfully implemented case studies that show how the combination of robotics and AI/ ML lead to accelerated project timelines and superior research outputs. 

28

25 May 2023

8 am PST = 11 am EST = 4 pm London


Recording

Post-webinar Q&A

  • Victor Dillard, Commercial Operations Director, Owkin
  • Hugo Ceulemans, Scientific Director Discovery Data Science, Johnson & Johnson
  • Dr. Guillaume Bataillon, oncologist at Institut Curie, a partner of the HealthChain project 
Building the future of collaborative research with federated learning

Federated learning is a new machine-learning paradigm where multiple partners can collaborate on complex research questions without centralising or sharing data outside of their organizations. This ‘collaborative machine learning’ approach enables data science teams to work on larger and more diverse datasets, previously inaccessible, boosting the predictive power of machine learning algorithms and enhancing AI capabilities. By overcoming privacy and confidentiality concerns, companies can build partnerships and consortia and retain their competitive edge. For example, the MELLODDY consortium pioneers federated learning-based drug discovery across 10 pharma companies benefiting from the collective insights of the world’s largest cheminformatics data network where each participant retains full confidentiality and governance over their molecular libraries.
Federated learning in healthcare can also facilitate knowledge transfer between medical researchers and data scientists, bridging the gap between AI and clinical care. The HealthChain project is a successful demonstration that an algorithm can be trained on siloed histology images, distributed across different hospitals, to predict treatment responses in breast cancer. Together with clinical, research and technology partners we demonstrated improved robustness and performance of the technology over locally trained algorithms. With the platform deployed and used reliably in a production environment, the stage is set for further collaborative research projects and eventually clinical applications in cancer, heart failure and other therapeutic areas.

 

24
  • Loganathan Kumarasamy, Head of Scientific Informatics, Validation and Compliance services, North America, Zifo R&D
  • Pat Baird, Regulatory Head of Global Software Standards, Phillips
  • Nathan A. Carrington, Ph.D.
    Head of Digital Health and Innovation
    Global Regulatory Policy and Intelligence
    Roche Diagnostics

Challenges in the regulation of AI Software as a Medical Device

Software as a medical device (SaMD) that leverages artificial intelligence (AI) has the opportunity to reshape healthcare. It also raises unique challenges for developers and regulators. As healthcare advances and digital solutions leveraging AI become more prevalent, it is important that medical device regulatory frameworks also advance to match the speed of innovation. The panel will review key terms related to AI SaMD and describe unique regulatory challenges associated with devices that leverage AI. Additionally, the panel will explore novel regulatory approaches to the regulation of AI SaMD currently under consideration by international regulatory authorities.

25Andreas Bender, Reader for Molecular Informatics at Cambridge University, and Director Digital Life Sciences at Nuvisan/ICB

Artificial Intelligence in Drug Discovery – What is Realistic, What are Illusions?

Although artificial intelligence (AI) has had a profound impact on areas such as image recognition, comparable advances in drug discovery are rare. We will discuss the stages of drug discovery in which improvements in the time taken, success rate or affordability will have the most profound overall impact on bringing new drugs to market. Changes in clinical success rates will have the most profound impact on improving success in drug discovery; in other words, the quality of decisions regarding which compound to take forward (and how to conduct clinical trials) are more important than speed or cost. Although current advances in AI focus on how to make a given compound, the question of which compound to make, using clinical efficacy and safety-related end points, has received significantly less attention. As a consequence, current proxy measures and available data cannot fully utilize the potential of AI in drug discovery, in particular when it comes to drug efficacy and safety in vivo. Thus, addressing the questions of which data to generate and which end points to model will be key to improving clinically relevant decision-making in the future.

12 May 2022

  • Gemma Turon, PhD, Chief Executive Officer and co-founder at Ersilia Open Source Initiative

Ersilia, a Hub of Open-Source AL/ML Models for Drug Discovery and Global Health

The Ersilia Open Source Initiative is a non-profit organization with the mission to equip laboratories and universities in low resource areas with AI tools for infectious disease research. Ersilia has developed a set of AI-based tools to support medicinal chemistry, parasitology and ADME experimental pipelines, offering them via a unified, open source platform the Ersilia Model Hub. With it, scientists can easily browse, select and run AI models to accelerate their drug discovery pipelines. In this talk, we will present our computational methods and infrastructure and their application to the discovery of new treatments for infectious diseases.

37

20 June 2023

8 am PST = 11 am EST = 4 pm London


Recording

  • Jason Alan Fries, PhD, Stanford University

Realizing the Promise of Foundation Models in Healthcare

Large language models like ChatGPT have captured the imagination of machine learning practitioners with their potential to transform the application of AI across many fields. However, in healthcare, transitioning from impressive tech demos to deployed AI has been challenging.

In this talk, I will discuss the opportunities large language models and other medical foundation models offer in terms of providing a better paradigm of doing “AI in healthcare.” First, I’ll outline what foundation models are and their relevance to healthcare. Then I’ll highlight some key opportunities provided by the next generation of medical foundation models. Finally I will discuss the current limitations in benchmarking and evaluating foundation models for medicine and how we can do better moving forward.

38

28 June 2023

8 am PST = 11 am EST = 4 pm London



Recording

  • Large Language Models: the ZS learning journey – Helena Deus, Biomedical Semantics Lead, Manager, ZS Associates
  • Large Language Models in Life Science Research and Development – Anthony Rowe, Head of Technology – Global Scientific IT, The Janssen Pharmaceutical Companies of JNJ
  • Carlos Outeiral, EPSRC Research
  • Associate, Oxford Protein Informatics Group and Stipendiary Lecturer in Biochemistry, St Peters College, University of Oxford

The Application of Large Language Models in Life Science Research and Development

This webinar aims to explore the application of large language models in life science R&D from
different perspectives, providing attendees with a comprehensive understanding of the topic and its potential implications for the industry.

39

14 September 2023



  • Barry Bunin, PhD; CEO, CDD
  • Eric Martin, PhD, Director of Computational Chemistry, Novartis
  • Daniel Erlandson, PhD, SVP, Frontier Medicines

Drug Design Trends in the Age of AI

Explore the intriguing world of computer-guided drug design as we compare two innovative methodologies: fragment-based drug design and full molecule-based drug design. Our esteemed panelists will delve into these two approaches’ strengths, limitations, and future prospects while uncovering potential synergies.

This webinar is produced by the Pistoia Alliance member company Collaborative Drug Discovery.

40

7 November 2023


7 am PST = 10 am EST = 3 pm London



Joe Mullen, Director of Professional Services, SciBite

Playing FAIR with AI

Sponsored by SciBite

Technological advancements exhibit varying degrees of longevity. Some are tried and trusted, enduring longer than others, more often when applied strategically to address tangible business challenges. Conversely, certain technologies succumb to fleeting hype without attaining substantive fruition. A constant, in this dynamic landscape is the data.

To harness the full potential of cutting-edge technologies, it is imperative to have your house, or more specifically, your data, in order. Here, we discuss the importance of foundational data management and the role of FAIR in enabling organisations, specifically within the life sciences, are agile enough to adapt to, and make use of, state-of-the-art technologies.

We will specifically discuss how the SciBite FAIR factory can be used to enable the application of large language models (LLMs) to democratise scientific data, and expedite the extraction of insight.

41

8 November 2023

8 am PST = 11 am EST = 4 pm London


Slides

Recording

  • Daniel Miller, NIH
  • Oleg Stroganov, Rancho Bioscience

Unpacking Unstructured Data: Extracting Insights from Neuropathological Reports of Parkinson’s Disease Patients Using Large Language Models

Linking pathology data with molecular and clinical data allows for a deeper understanding of disease, more accurate diagnosis, and ultimately better patient treatment. Pathology data needs to be structured in order to achieve this. The aim of this study was to make unstructured neuropathological data, located in the NeuroBioBank (NBB), follow FAIR (Findability, Accessibility, Interoperability, and Reusability) principles, and investigate the potential of Large Language Models (LLMs) in wrangling unstructured neuropathological reports. By making the currently inconsistent and disparate data findable, our overarching goal was to enhance research output and speed.


42

8 December 2023

9 am PST =12 noon EST = 5 pm London

Recording

  • Isabella Feierberg, Jnana
  • Veronique Francois-Newton, Pistoia Alliance
  • Larry Callahan, US FDA
  • Ellen Berg, Alto Predict

With discussion by

FAIR Assay Annotation and In-Vitro Pharmacology Projects by the Pistoia Alliance

A report for the Pistoia Alliance community of the work in the DataFAIRy project in 2022 and 2023, the synergies with other projects that impact the research data quality (IVP, SEED), and the harmonization between the DataFAIRy assay metadata annotation template, the FDA IVP metadata capture, and the proprietary assay registration systems, followed by a panel discussion of the key project champions from industry, government, and the Pistoia Alliance.

43

23 January 2024

8 am PST = 11 am EST = 4 pm London


Recording

Karl Leswing, Machine Learning Tech Lead, Schrödinger

AI/ML Webinar: AI Tools for Drug Design - AutoDesigner, a De Novo Design Algorithm

The lead optimization stage of a drug discovery program generally involves the design, synthesis, and assaying of hundreds to thousands of compounds. The design phase is usually carried out via traditional medicinal chemistry approaches and/or structure-based drug design (SBDD) when suitable structural information is available. Two of the major limitations of this approach are (1) difficulty in rapidly designing potent molecules that adhere to myriad project criteria, or the multiparameter optimization (MPO) problem, and (2) the relatively small number of molecules explored compared to the vast size of chemical space. To address these limitations we have developed AutoDesigner, a de novo design algorithm.

2929 June 2022
  • Frederik van den Broek, Senior Director, Professional Services and Consulting, Elsevier
  • Koen Cobbaert, Senior Manager - Quality, Standards & Regulations, Philips
  • Sophie Ollivier, Chief Data Officer R&D, Servier
  • Gideon Rosenthal, Head of Research, Data Science Group

Emerging Regulations of AI – Impact on Pharma R&D

Most recently both the EU and the US announced new legislation aiming to regulate the development and use of Artificial Intelligence: the EU AI Act and the President Biden Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence. Our panel of experts will discuss how these legal changes may affect research and development in drug discovery.

44

31 January 2024

8 am PST = 11 am EST = 4 pm London

Recording

  • Prashant Natarajan, H2O.ai
  • Peter Henstock, Pfizer

Valuation of AI Technology Investments

Today the hype that surrounded artificial intelligence in the previous years is largely gone, and the industry practitioners are looking for solid use cases and proof of value. Prashant Natarajan, VP of H2O.ai, and Dr. Peter Henstock, ML&AI Technical Lead, Pfizer, will discuss the methods for valuation of AI investments in the pharmaceutical industry.

303 August 2022David V. Sanker, Ph.D., Partner,
Morgan, Lewis & Bockius LLP

AI - fountain of innovation, or the monster that is eating it alive?

Is AI the fountain of innovation, or the monster that is eating it alive? Can the United States or Europe support the advancement of beneficial AI while simultaneously constraining harmful AI? And how does AI affect intellectual property protection? Join the discussion to consider these questions and more.

45

6 March 2024

8 am PST = 11 am EST = 4 pm London

Recording

  • Navdeep Gill, Engineering Lead, H20.ai
  • Chas Nelson, Founder, CTO, and Director, gliff.ai

Trustworthy AI

Our speakers, Navdeep Gill (H2O.ai) and Chas Nelson (gliff.ai) will present a perspective on trustworthy and responsible AI. We will discuss various components that contribute to responsible AI and the new ANSI standard “ANSI/CTA 2090 Use of Artificial Intelligence in Health Care: Trustworthiness” and the ways to implement trustworthy and responsible AI in practice covering the whole artificial intelligence lifecycle.

31

19 October 2022pm London


Recording

  • Daniel Jamieson, Biorelate
  • Jon Stevens, Abbvie
  • Etzard Stolte, Roche

Large Language Models in the Real World

We know enough about the LLM technology at this time to move it from popular hype into production. We are, however, still at the beginning of this journey. What does biopharma research need to focus on to ensure they are implementing LLMs effectively? How do we benchmark and standardise best practices for LLM usage? Join knowledge management thought leaders from AbbVie, Roche and Biorelate to take the LLM conversation forward from 'if and why' to 'how, what, when and where.' 

Also see:

46

14 March 2024

8 am PST = 11 am EST = 4 3 pm London


RecordingRegister

  • William Shirley, Sr. Director Structural Chemistry, Gilead Sciences
  • Ton van Daelen, Portfolio Director, Dassault Systemes / BIOVIA

Generative Therapeutics Design: Accelerating Drug Discovery with AI and Machine Learning

The application of Artificial Intelligence/Machine Learning (AI/ML) methods in drug discovery are maturing and their utility and impact is likely to permeate many aspects of drug discovery. Numerous methods, however, utilize structure-activity relationship (SAR) data without explicit use of 3D structural information of the ligand protein complex. Gilead is using BIOVIA’s Generative Therapeutics Design (GTD) method to take advantage of 3D structural models, i.e. pharmacophoric representation of ligand protein interaction as well as typical docking/scoring steps. Using Gilead’s SAR data set pertaining to the discovery of spleen tyrosine kinase (SYK) inhibitors Entospletinib and Lanraplenib they found that common types of problems in medicinal chemistry can be effectively addressed via GTD.

32
  • Dana Vanderwall, Pistoia Alliance
  • Ellen Berg, Insitro
  • Jason Harris, CDD
  • Charles Schmitt, NIEHS
  • Steve Case or Peter Winstanley, Semantic Arts

FAIR Assay Annotation Project by the Pistoia Alliance and the NIH

This is a webinar for the NIEHS audience to inform the NIH about the progress in the Pistoia Alliance FAIR Assay Annotation project (a.k.a. "DataFAIRy") and to brainstorm the future collaboration opportunities between the Pistoia Alliance and the NIH. The event itself is limited to the NIH participants and the PA speakers, but the recording may be made publicly available, subject to agreement with the NIEHS.

33Planning
  • Loganathan Kumarasamy, Head of Scientific Informatics, Validation and Compliance services, North America, Zifo R&D
  • Pat Baird, Regulatory Head of Global Software Standards, Phillips
  • Nathan A. Carrington, Ph.D.
    Head of Digital Health and Innovation
    Global Regulatory Policy and Intelligence
    Roche Diagnostics
  • Federico Cabitza, University of Milano-Bicocca (TBC)
  • TBD

Use Cases in Government Regulation of AI/ML and Compliance

E.g.:

https://pubmed.ncbi.nlm.nih.gov/34108105/

34PlanningThe PA GMLP Team

Good Machine Learning Practices (GMLP) work at the Pistoia Alliance

A summary of our GMLP efforts for the Pistoia Alliance community.

35Planning The PA DataFAIRy Team

FAIR Assay Annotation Project by the Pistoia Alliance

A report for the Pistoia Alliance community of the work in the DataFAIRy project in 2022 and 2023, and the synergies with other projects that impact the research data quality (IVP, SEED), to be delivered in the second half of 2023.

IdeaTBDExscientia, i.e. John Overington

Fast and accurate generative AI design of novel antibodies

RE: https://investors.exscientia.ai/press-releases/press-release-details/2022/Exscientia-Expands-Biologics-Design-Capability-with-Automated-Laboratory/default.aspx

Idea TBDTBD

Use of Predicted Protein Structure in AI-driven CADD

RE: https://pubs.rsc.org/en/content/articlelanding/2023/SC/D2SC05709C

IdeaTBDSeeking input from UC Engineering and contacts at the OpenAI

Large Language Models

Such as ChatGPT and other NLG efforts

IdeaTBDTBD

Knowledge Graphs in Pharmaceutical Discovery

Include KG companies: Wisecube, Elsevier, Biorelate, BenchSci


IdeaTBD

Mika Lindvall, Novartis Institutes for BioMedical Research, Emeryville, California 94608

Email: mika.lindvall@outlook.com

RE: the paper: An Artificial Intelligence Approach to Proactively Inspire Drug Discovery with Recommendations
  • Tom Woodcock, Technical Sales Manager, SciBite

Generating Evidence-Based Hypothesis with AI-Powered Knowledge Graphs

Within the life sciences, the necessity for evidence-based decision making is clear, where
wrong decisions could result in dire consequences. In the rapidly evolving landscape of
artificial intelligence (AI), knowledge graphs have emerged as pivotal resources for artificial
intelligence tools and agents, offering a structured and scalable way to access a wealth of
explicit and implicit knowledge and thus expedite the generation of hypothesis. By
synthesizing information from diverse sources and integrating ontologies, these graphs
facilitate a level of interoperability and scalability that is critical for the development of
intelligent systems, particularly within the domain of life sciences. This presentation will
introduce some of the approaches SciBite is taking to enhance and leverage knowledge
graphs in the context of AI, including:

  • Create and enrich semantic networks by applying cutting edge AI-tools on top of our
    industry leading NER tools
  • Support use case specific queries and analysis with fine-tuned vocabularies and
    edge embeddings
  • Using generative AI to let users talk to the knowledge graphs and get sensible
    human-readable answers

Through this talk, we aim to showcase how cutting-edge techniques not only refine the
structure and utility of knowledge graphs but also open new avenues for their application in
AI-driven research and development.

47

20 March 2024

6 am PST = 9 am EST = 2 pm London


Recording

  • Dr. Haralambos Marmanis, Executive Vice President & CTO, Copyright Clearance Center
  • Catherine Zaller Rowland, Vice President, General Counsel, Copyright Clearance Center

Copyright Implications for AI Systems: Considerations for Governance and Risk

The rapid growth and adoption of AI technologies have tremendous promise to drive innovation and improve operational efficiency, particularly if the risks can be managed. There are many risks, including those related to the mass consumption of copyrighted works, which is at the heart of AI systems that rely on them. In many of these systems, copyrighted content is copied, stored, and can be reproduced, analyzed, and used to create summaries, classifications, and additional works.

This event will provide insight on how copyrighted materials are retained and reused in AI systems,
including large language models. Our expert speakers will discuss the copyright implications, the legal risks, and the role of licensing as an integral part of a comprehensive AI governance, risk, and
compliance program.

48

26 June 2024

8 am PST = 11 am EST = 4 pm London


Recording

  • Daniel Jamieson, Biorelate
  • Jon Stevens, Abbvie
  • Etzard Stolte, Roche

Large Language Models in the Real World - part 2


This is the continuation of the conversation started on March 6th

49

12 July 2024

8 am PST = 11 am EST = 4 pm London

Recording

  • Christopher Waller, VP, EPAM
  • Gokul Gawande, Principal Data QA Engineer, Roche
  • Adarsh Srivastava, Head of DATA QA, Roche

Ethics in Artificial Intelligence

What is ethics in Artificial Intelligence? What exactly should an AI practitioner do to ensure alignment with ethical use of technology? What are perspectives on ethics in AI from different business stakeholders in the pharmaceutical industry, from early stage R&D to clinical trials? Our panelists will discuss these and other questions in this engaging webinar.

Idea TBDTBD

Use of Predicted Protein Structure in AI-driven CADD

RE: https://pubs.rsc.org/en/content/articlelanding/2023/SC/D2SC05709C